首页> 外文期刊>Fuel >Effects of oxygen concentrations on the ignition and quasi-steady processes of n-heptane spray flames using large eddy simulation
【24h】

Effects of oxygen concentrations on the ignition and quasi-steady processes of n-heptane spray flames using large eddy simulation

机译:大涡模拟模拟氧浓度对正庚烷喷雾火焰着火及准稳态过程的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Exhaust Gas Recirculation (EGR) is a frequently used technique to reduce the production of NOx. The effect of EGR on the early flame evolution, two-stage ignition process and spray flame structures for n-heptane spray flames are investigated using large eddy simulation. The two-stage ignition process is identified based on the formation of key species and early heat release process. Results demonstrate that a longer ignition delay (ID) and flame lift-off length (LOL) under lower oxygen concentration conditions could increase the mixing time for fuel and air. However, the first-stage ignition still initiates in fuel-richer regions for the cases with higher EGR rates due to the lack of oxygen. In contrast, compared to the case with the same initial oxygen content but at a higher gas temperature of 1000 K, the first-stage ignition moves to stoichiometric mixture fraction regions at 900 K. The combustion mode analysis based on hydroxyl and formaldehyde is conducted to distinguish between the low-and high-temperature combustion regions. Most importantly, to study the stabilization mechanism, the chemical explosive mode analysis (CEMA) is conducted based on analysis on the local flow time scale and the chemical time scale. During the early stage of ignition, a balance between reaction and mixing implies that cool flame propagates from the ignition spots through the entire flow field. And during the quasi-steady state, autoignition plays a dominant role.
机译:废气再循环(EGR)是减少NOx产生的一种常用技术。利用大涡模拟研究了EGR对正庚烷喷雾火焰的早期火焰演化,两阶段点火过程和喷雾火焰结构的影响。根据关键物质的形成和早期放热过程确定两阶段点火过程。结果表明,在较低的氧气浓度条件下,较长的点火延迟(ID)和火焰升起长度(LOL)会增加燃料和空气的混合时间。但是,由于缺少氧气,在较高EGR率的情况下,第一阶段点火仍会在富燃料区域启动。相反,与具有相同初始氧含量但在1000 K的较高气体温度下的情况相比,第一阶段点火在900 K处移动到化学计量的混合分数区域。基于羟基和甲醛的燃烧模式分析区分低温和高温燃烧区域。最重要的是,为了研究稳定机理,在对局部流动时间尺度和化学时间尺度进行分析的基础上,进行了化学爆炸模式分析(CEMA)。在点火的早期阶段,反应与混合之间的平衡意味着冷火焰从点火点传播到整个流场。在准稳态下,自燃起主导作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号