...
首页> 外文期刊>Fresenius Environmental Bulletin >UNCERTAINTIES OF BACTERIAL INACTIVATION IN MARINE ENVIRONMENT
【24h】

UNCERTAINTIES OF BACTERIAL INACTIVATION IN MARINE ENVIRONMENT

机译:海洋环境中细菌灭活的不确定性

获取原文
获取原文并翻译 | 示例

摘要

It is a common final disposal option to discharge treated or pre-treated domestic wastewaters utilizing marine outfall systems in coastal areas. The main parameters used to design a marine outfall system are: treatment level, effluent flow rate, length and depth of the outfall system, current velocity, bacterial inactivation rate and density of effluent and sea water. It is vital to put in practice the water quality standards especially in sensitive areas (such as aqua-culture and recreational) to protect public health against water borne diseases originated from pathogens. In this manner, it is very important to define the case specific bacterial inactivation rates and the time needed to inactive 90% of the bacteria (T_(90)) in design of marine outfall systems. According to Turkish Water Pollution Control Regulations, T_(90) values in summer and winter seasons are 1 and 3 hours respectively, for Mediterranean Sea at sea surface. Bacterial inactivation rate is affected by solar irradiation, salinity, temperature, pH, predation by other organisms and nutrient deficiencies. However, solar irradiation is the most effective environmental parameter affecting the bacterial inactivation process and T_(90) values increase dramatically during night-time or in darkness. Therefore, dynamic T_(90) values, which change with respect to varying light intensities and ambient conditions, should be used instead of constant values to obtain more reliable dilution and bacterial concentration predictions and to decrease uncertainty of the predicted parameters. In this study, uncertainties of bacterial inactivation process have been analyzed using Monte Carlo Simulation for Antalya Sea Outfall System. The required input data of hourly solar radiation has been obtained from State Meteorology Office of Antalya to determine hourly values of T_(90) parameter. Other required input data have been obtained from in-situ measurements. The obtained results show that bacterial inactivation process needs to be evaluated in a probabilistic approach to estimate bacteriological pollution risk from marine outfall systems.
机译:利用沿海排污系统排放经过处理或预处理的生活污水是一种常见的最终处置选择。用于设计海洋排污系统的主要参数是:处理水平,污水流速,排污系统的长度和深度,流速,细菌灭活率以及污水和海水的密度。尤其是在敏感地区(如水产养殖和娱乐场所)实施水质标准,以保护公众健康免受病原体引起的水传播疾病至关重要。以这种方式,在海洋排污系统的设计中,定义案例特定的细菌灭活率和使90%的细菌失活所需的时间(T_(90))非常重要。根据土耳其水污染控制法规,地中海海平面夏季和冬季的T_(90)值分别为1小时和3小时。细菌灭活率受日光照射,盐度,温度,pH,其他生物的捕食和营养缺乏的影响。但是,太阳辐射是影响细菌灭活过程的最有效的环境参数,T_(90)值在夜间或黑暗中会急剧增加。因此,应使用随变化的光强度和环境条件而变化的动态T_(90)值代替恒定值,以获得更可靠的稀释度和细菌浓度预测值,并减少预测参数的不确定性。在这项研究中,细菌灭活过程的不确定性已使用安塔利亚海上排污系统的蒙特卡罗模拟进行了分析。已从安塔利亚国家气象局获得所需的每小时太阳辐射输入数据,以确定T_(90)参数的每小时值。其他所需的输入数据已从现场测量获得。获得的结果表明,细菌灭活过程需要以概率方法进行评估,以估计来自海洋排污系统的细菌污染风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号