首页> 外文期刊>Foundations and trends in theoretical computer science >Incidence Theorems and Their Applications
【24h】

Incidence Theorems and Their Applications

机译:关联定理及其应用

获取原文
       

摘要

We survey recent (and not so recent) results concerning arrangements of lines, points, and other geometric objects and the applications these results have in theoretical computer science and combinatorics. The three main types of problems we will discuss are: (1) Counting incidences: Given a set (or several sets) of geometric objects (lines, points, etc.), what is the maximum number of incidences (or intersections) that can exist between elements in different sets? We will see several results of this type, such as the Szemeredi-Trotter theorem, over the reals and over finite fields and discuss their applications in combinatorics (e.g., in the recent solution of Guth and Katz to Erdos' distance problem) and in computer science (in explicit constructions of multisource extractors). (2) Kakeya type problems: These problems deal with arrangements of lines that point in different directions. The goal is to try and understand to what extent these lines can overlap one another. We will discuss these questions both over the reals and over finite fields and see how they come up in the theory of randomness extractors. (3) Sylvester-Gallai type problems: In this type of problems, one is presented with a configuration of points that contain many 'local' dependencies (e.g., three points on a line) and is asked to derive a bound on the dimension of the span of all points. We will discuss several recent results of this type, over various fields, and see their connection to the theory of locally correctable error-correcting codes. Throughout the different parts of the survey, two types of techniques will make frequent appearance. One is the polynomial method, which uses polynomial interpolation to impose an algebraic structure on the problem at hand. The other recurrent techniques will come from the area of additive combinatorics.
机译:我们调查有关线,点和其他几何对象的排列的最新(而非最近)结果,以及这些结果在理论计算机科学和组合学中的应用。我们将讨论的三种主要类型的问题是:(1)计算入射数:给定一组(或几组)几何对象(线,点等),可以达到的最大入射数(或交点)是多少?存在于不同集合中的元素之间?我们将在实数域和有限域上看到此类结果的一些结果,例如Szemeredi-Trotter定理,并讨论它们在组合学中的应用(例如,在Guth和Katz对Erdos距离问题的最新解决方案中)和计算机中科学(在多源提取程序的显式构造中)。 (2)Kakeya类型问题:这些问题涉及指向不同方向的线的布置。目的是尝试了解这些线在多大程度上可以相互重叠。我们将在实数域和有限域中讨论这些问题,并查看它们在随机性提取器理论中是如何出现的。 (3)Sylvester-Gallai类型的问题:在这种类型的问题中,一个问题的提出是一种包含许多“局部”依存关系的点的配置(例如,一条线上的三个点),并被要求得出关于所有点的跨度。我们将在各个领域讨论这种类型的一些最新结果,并查看它们与本地可校正纠错码理论的联系。在调查的不同部分,两种技术会经常出现。一种是多项式方法,它使用多项式插值法将代数结构强加于眼前的问题上。其他循环技术将来自添加剂组合技术领域。

著录项

  • 来源
    《Foundations and trends in theoretical computer science》 |2010年第4期|QT06-QT071-911-7981-137|共137页
  • 作者

    Zeev Dvir;

  • 作者单位

    Princeton University, Mathematics and Computer Science Departments, Princeton, NJ 08540, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:47:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号