首页> 外文期刊>Finite Elements in Analysis and Design >A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures
【24h】

A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures

机译:并行有限元框架,用于基于梯度的高性能结构优化设计

获取原文
获取原文并翻译 | 示例
           

摘要

Structural optimization using gradient-based methods is a powerful design technique that is well suited for the design of high-performance structures. However, the ever-increasing complexity of finite-element models and design formulations results in a bottleneck in the computation of the gradients required for the design optimization. Furthermore, in light of current high-performance computing trends, any methods intended to address this bottleneck must efficiently utilize parallel computing resources. Therefore, there is a need for solution and gradient evaluation methods that scale well with the number of design variables, constraints, and processors. We address this need by developing an integrated parallel finite-element analysis tool for gradient-based design optimization that is designed to use specialized parallel solution methods to solve large-scale high-fidelity structural optimization problems with thousands of design variables, millions of state variables, and hundreds of load cases. We describe the most relevant details of the parallel algorithms used within the tool. We present consistent constraint formulations and aggregation techniques for both material failure and buckling constraints. To demonstrate both the solution and functional accuracy, we compare our results to an exact solution of a pressure-loaded cylinder made with either isotropic or orthotropic material. To demonstrate the parallel solution and gradient evaluation performance, we perform a structural analysis and gradient evaluation for a large transport aircraft wing with over 5.44 million unknowns. The results show near-ideal scalability of the structural solution and gradient computation with the number of design variables, constraints, and processors, which makes this framework well suited for large-scale high-fidelity structural design optimization.
机译:使用基于梯度的方法进行结构优化是一种强大的设计技术,非常适合于高性能结构的设计。但是,有限元模型和设计公式的复杂性不断增加,导致设计优化所需的梯度计算出现瓶颈。此外,鉴于当前的高性能计算趋势,旨在解决该瓶颈的任何方法都必须有效利用并行计算资源。因此,需要一种解决方案和梯度评估方法,该方法可以随着设计变量,约束和处理器的数量而很好地扩展。我们通过为基于梯度的设计优化开发集成的并行有限元分析工具来满足这一需求,该工具旨在使用专门的并行解决方法来解决具有数千个设计变量,数百万个状态变量的大规模高保真结构优化问题,以及数百种工况。我们描述了该工具中使用的并行算法的最相关细节。我们为材料破坏和屈曲约束提供了一致的约束公式和聚合技术。为了证明该解决方案和功能精度,我们将我们的结果与采用各向同性或正交各向异性材料制成的压力加载气缸的精确解决方案进行比较。为了演示并行解决方案和梯度评估性能,我们对具有超过544万未知数的大型运输机翼进行了结构分析和梯度评估。结果表明,随着设计变量,约束和处理器数量的增加,结构解决方案和梯度计算具有近乎理想的可伸缩性,这使得该框架非常适合大规模高保真结构设计优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号