...
首页> 外文期刊>Experimental Mechanics >Performance analysis of fully explicit and fully implicit solvers within a spectral element shallow-water atmosphere model
【24h】

Performance analysis of fully explicit and fully implicit solvers within a spectral element shallow-water atmosphere model

机译:光谱元素浅水大气模型内完全显式和完全隐式求解器的性能分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Explicit Runge-Kutta methods and implicit multistep methods utilizing a Newton-Krylov nonlinear solver are evaluated for a range of configurations of the shallow-water dynamical core of the spectral element community atmosphere model to evaluate their computational performance. These configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to the largest problem sizes. This analysis is performed within the shallow-water dynamical core option of a full climate model code base to enable a wealth of simulations for study, with the aim of informing solver development within the more complete hydrostatic dynamical core used for climate research. The limitations and benefits to using explicit versus implicit methods, with different parameters and settings, are discussed in light of the trade-offs with Message Passing Interface (MPI) communication and memory and their inherent efficiency bottlenecks. Given the performance behavior across the configurations analyzed here, the recommendation for future work using the implicit solvers is conditional based on scale separation and the stiffness of the problem. For the regionally refined configurations, the implicit method has about the same efficiency as the explicit method, without considering efficiency gains from a preconditioner. The potential for improvement using a preconditioner is greatest for higher spectral order configurations, where more work is shifted to the linear solver. Initial simulations with OpenACC directives to utilize a Graphics Processing Unit (GPU) when performing function evaluations show improvements locally, and that overall gains are possible with adjustments to data exchanges.
机译:针对频谱元素群落大气模型的浅水动力核心的一系列配置,评估了使用Newton-Krylov非线性求解器的显式Runge-Kutta方法和隐式多步方法,以评估其计算性能。这些配置旨在在不同但相关的模型使用场景下探索每种方法的属性,其中包括元素内的光谱顺序变化,静态区域细化以及最大问题规模的缩放。此分析是在完整气候模型代码库的浅水动力核心选项中进行的,以使能够进行大量模拟研究,以告知用于气候研究的更完整的静水动力核心中的求解器开发。根据消息传递接口(MPI)通信和内存的权衡及其固有的效率瓶颈,讨论了使用具有不同参数和设置的显式方法与隐式方法的局限性和优点。给定此处分析的配置之间的性能行为,对使用隐式求解器的未来工作的建议是有条件的,基于标度分离和问题的严重性。对于区域优化的配置,隐式方法的效率与显式方法大致相同,而无需考虑预处理器的效率提升。对于更高的频谱阶配置,使用预处理器进行改进的潜力最大,在这种情况下,更多的工作转移给了线性求解器。使用OpenACC指令进行的初始模拟在执行功能评估时利用图形处理单元(GPU)显示出局部的改进,并且通过调整数据交换可以整体获得收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号