首页> 外文期刊>European Journal of Mechanics. A, Solids >Modeling the propagation of arterial dissection
【24h】

Modeling the propagation of arterial dissection

机译:模拟动脉夹层的传播

获取原文
获取原文并翻译 | 示例
       

摘要

Arterial dissections are frequently observed in clinical practice and during road traffic accidents. In particular, the lamellarly arrangement of elastin, collagen, in addition to smooth muscle cells in the middle arterial layer, the media, favors dissection failure. Experimental studies and related biomechanical models are rare in the literature. Finite strain kinematics is employed, and the discontinuity in the displacement field accounts for tissue separation. Dissection is regarded as a gradual process in which separation between incipient material surfaces is resisted by cohesive traction. Two variational statements together with their consistent linearizations form the basis for a finite element implementation. We combine the cohesive crack concept with the partition of unity finite element method, where nodal degrees of freedom adjacent to the discontinuity are enhanced. The developed continuum mechanical and numerical frameworks allow the analysis of the propagation of dissections within general nonlinear boundary-value problems, where the constitutive description for the continuous and the cohesive material is considered independent from each other. The continuous material is modeled as a fiber-reinforced composite with the fibers corresponding to the collagenous component which are assumed to be embedded in a non-collagenous isotropic groundmatrix. Dispersion of the collagen fiber orientation is considered in a continuum sense by one structure parameter. A novel cohesive potential per unit undeformed area is used to derive a traction separation law appropriate for the description of the mechanical properties of medial dissection. The cohesive stiffness contribution to the element stiffness matrix is explicitly derived. In particular, the dissection propagation of a rectangular strip of a human aortic media is investigated. Cohesive material properties are quantified by comparing the experimentally measured load with the computed dissection load.
机译:在临床实践中和道路交通事故期间经常观察到动脉夹层。尤其是,弹性蛋白,胶原的层状排列,除了中动脉中层的平滑肌细胞外,还有助于解剖失败。在文献中很少进行实验研究和相关的生物力学模型。采用了有限应变运动学,位移场的不连续性说明了组织分离的原因。解剖被认为是一个渐进过程,其中初始材料表面之间的分离受到内聚力的阻碍。两个变式语句及其一致的线性化构成了有限元实现的基础。我们将粘性裂纹的概念与统一有限元方法的划分相结合,其中不连续点附近的节点自由度得到了增强。发达的连续力学和数值框架允许分析一般非线性边界值问题中的截面传播,其中连续材料和粘结材料的本构描述被认为是彼此独立的。连续材料被建模为纤维增强的复合材料,其中对应于胶原成分的纤维被假定嵌入非胶原的各向同性基体中。通过一个结构参数从连续的角度考虑胶原纤维取向的分散。使用每单位未变形区域的新型内聚势来推导适用于描述内侧解剖机械特性的牵引力分离定律。明确得出了对单元刚度矩阵的内聚刚度贡献。特别地,研究了人类主动脉介质的矩形带的解剖传播。通过将实验测量的载荷与计算的解剖载荷进行比较,可以量化内聚材料的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号