首页> 外文期刊>European Earthquake Engineering >Damping Matrix and Modal Parameters Identification of Dynamic Structure by Sub-Structuring Technique
【24h】

Damping Matrix and Modal Parameters Identification of Dynamic Structure by Sub-Structuring Technique

机译:子结构技术对动力结构阻尼矩阵及模态参数的识别

获取原文
获取原文并翻译 | 示例
           

摘要

One major accomplishment of this research paper is developing a method to identify damping matrix and modal parameters in frequency domain of a dynamic system by sub structuring technique. The dynamic system is divided into a series of subsystems each one of them is then analysed and the vibration responses, here spectral densities of velocities and displacements, to an impulsive loading, of the overall system are then obtained by a suitable combination of subsystem data, that is mobility and re-ceptance coupling technique. The spatial coupling is first employed within finite element model (FE) for damping matrix identification. In the second step, The modal coupling, the complex inversion and the FRF coupling methods for damping and modal parameters identification are used to identify the proportional damping matrix and the modal parameters. It should be noted that the velocity and displacement data are transformed to spectral density matrices before the identification technique is applied. Application of the proposed method requires an N×N velocity and displacement matrices .N being the model order or the number of modes of the dynamic system. In practice, it is not possible to gather such an amount of data. Therefore, a minimum set of data should be used for economy concern. Hence It is shown how the N×(N-1) velocity or displacement response matrices in time domain are completed from the knowledge of only one row or column of response matrices of velocities or displacements. In practice, once the response matrices, velocities or displacements, are identified in time domain, they are transformed into frequency domain data. The derivation and application of the proposed method for damping matrix and modal parameters identification is possible because of the connection between frequency domain and time domain data. To simulate real life data, a white noise with Gaussian distribution and zero mean is added to analytical, that is noise free, data. The method is applied to deliberately chosen simple analytical lumped mass systems.
机译:该研究论文的一项主要成就是开发了一种通过子构造技术识别动态系统频域中的阻尼矩阵和模态参数的方法。将动态系统分为一系列子系统,然后分别分析每个子系统,然后通过子系统数据的适当组合来获得整个系统的振动响应,这里是速度和位移的频谱密度,对整个系统的冲击载荷,这就是移动性和接受耦合技术。首先在有限元模型(FE)中采用空间耦合来识别阻尼矩阵。第二步,使用模态耦合,复数反演和FRF耦合方法进行阻尼和模态参数识别,以识别比例阻尼矩阵和模态参数。应当注意,在应用识别技术之前,速度和位移数据已转换为频谱密度矩阵。所提出方法的应用需要N×N个速度和位移矩阵.N是动力学系统的模型阶数或模数。实际上,不可能收集到如此大量的数据。因此,出于经济考虑,应使用最少的数据集。因此,示出了仅从速度或位移的响应矩阵的一行或一列的知识来完成时域的N×(N-1)个速度或位移响应矩阵的过程。实际上,一旦在时域中确定了响应矩阵,速度或位移,它们就会转换为频域数据。由于频域和时域数据之间的联系,所提出的用于阻尼矩阵和模态参数识别的方法的推导和应用是可能的。为了模拟现实生活中的数据,将具有高斯分布且均值为零的白噪声添加到分析数据中,即无噪声数据。该方法适用于故意选择的简单分析集总质量系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号