首页> 外文期刊>Estuarine Coastal and Shelf Science >Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary
【24h】

Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary

机译:长江口潮间带夏季反硝化和一氧化二氮交换

获取原文
获取原文并翻译 | 示例
       

摘要

Sediment denitrification rates and nitrous oxide (N_2O) exchange fluxes in the Yangtze estuary intertidal zone (mudflats and salt marshes) were measured in summer-time using an acetylene inhibition technique and an in situ static closed chamber method. N_2O natural production rates ranged between 0.10 μmol N m~(-2) h~(-1) and 8.50 μmol N m~(-2) h~(-1), and the denitrification rates ranged from 18.71 μmol N m~(-2) h~(-1) to 35.87 μmol N m~(-2) h~(-1). The N_2O natural production rates in overlying water were low, with intertidal sediment being the source of overlying water N_2O during the submerged period. Data analysis indicated that most sediment N_2O was not derived from denitrification, but from several other nitrogen-cycling processes. During the low tide, the middle tidal marsh was the source of atmosphere N_2O (exchange fluxes changed between -11.03 μmol N m~(-2) h~(-1) and 13.17 μmol N m~(-2) h~(-1)). 5 cm and 10 cm depth ground temperatures were significant factors controlling the emission flux. At the low tidal flat, N_2O emission flux rates ranged from -5.75 μmol N m~(-2) h~(-1) to 0.49 μmol N m~(-2) h~(-1) at the sediment-atmosphere interface. Overall, the middle tidal marsh was the source of atmospheric N_2O, while the low tidal flat was a sink for atmospheric N_2O. Plants of the intertidal zone (Scirpus mariqueter and benthic algae) were significant factors controlling N_2O exchange flux. Photosynthesis of intertidal zone plants inhibited the emission of N_2O and induced consumption, while plant respiration may enhance N_2O emission from the intertidal zone. N_2O emission and consumption at the intertidal zone-atmosphere interface correlated positively with the emission and consumption of CO_2.
机译:夏季,采用乙炔抑制技术和原位静态封闭室法测量长江口潮间带沉积物的反硝化速率和一氧化二氮(N_2O)交换通量(泥滩和盐沼)。 N_2O的自然产率介于0.10μmolN m〜(-2)h〜(-1)和8.50μmolN m〜(-2)h〜(-1)之间,反硝化率介于18.71μmolN m〜(-1)之间。 -2)h〜(-1)至35.87μmolN m〜(-2)h〜(-1)。上覆水中N_2O的自然产率很低,潮间沉积物是淹没时期上覆水N_2O的来源。数据分析表明,大多数沉积物N_2O并非来自反硝化,而是来自其他几个氮循环过程。在退潮期间,中潮汐沼泽是大气N_2O的来源(交换通量在-11.03μmolN m〜(-2)h〜(-1)和13.17μmolN m〜(-2)h〜(-之间变化1))。 5厘米和10厘米深度的地面温度是控制排放通量的重要因素。在低潮滩,沉积物-大气界面的N_2O排放通量率范围为-5.75μmolN m〜(-2)h〜(-1)至0.49μmolN m〜(-2)h〜(-1)。 。总体而言,中潮汐沼泽是大气N_2O的来源,而低潮滩则是大气N_2O的汇。潮间带的植物(Scirpus mariqueter和底栖藻类)是控制N_2O交换通量的重要因素。潮间带植物的光合作用抑制了N_2O的排放并诱导了其消耗,而植物的呼吸作用则可能增加了潮间带的N_2O的释放。潮间带-大气界面N_2O的排放和消耗与CO_2的排放和消耗呈正相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号