首页> 外文期刊>Environmental toxicology and chemistry >PLASMA MEMBRANE SURFACE POTENTIAL (ψ_(PM)) AS A DETERMINANT OF ION BIOAVAILABILITY: A CRITICAL ANALYSIS OF NEW AND PUBLISHED TOXICOLOGICAL STUDIES AND A SIMPLIFIED METHOD FOR THE COMPUTATION OF PLANT ψ_(PM)
【24h】

PLASMA MEMBRANE SURFACE POTENTIAL (ψ_(PM)) AS A DETERMINANT OF ION BIOAVAILABILITY: A CRITICAL ANALYSIS OF NEW AND PUBLISHED TOXICOLOGICAL STUDIES AND A SIMPLIFIED METHOD FOR THE COMPUTATION OF PLANT ψ_(PM)

机译:等离子体膜表面电势(ψ_(PM))决定离子生物利用度:新的和发表的毒理学研究的临界分析和简化的植物ψ_(PM)计算方法

获取原文
获取原文并翻译 | 示例
       

摘要

Plasma membranes (PMs) are negatively charged, and this creates a negative PM surface electrical potential (ψ_(PM)) that is also controlled by the ionic composition of the bathing medium. The ψ_(PM) controls the distribution of ions between the PM surface and the medium so that negative potentials increase the surface activity of cations and decrease the surface activity of anions. All cations reduce the negativity of ψ_(PM), and these common ions are effective in the following order: Al~(3+) > H~+ > Cu~(2+) > Ca~(2+) ≈ Mg~(2+) > Na~+ ≈ K~+. These ions, especially H~+, Ca~(2+), and Mg~(2+), are known to reduce the uptake and biotic effectiveness of cations and to have the opposite effects on anions. Toxicologists commonly interpret the interactions between toxic cations (commonly metals) and ameliorative cations (commonly H~+, Ca~(2+), and Mg~(2+)) as competitions for binding sites at a PM surface ligand. The ψ_(PM) is rarely considered in this biotic ligand model, which incorporates the free ion activity model. The thesis of this article is that ψ_(PM) effects are likely to be more important to bioavailability than site-specific competition. Furthermore, ψ_(PM) effects could give the false appearance of competition even when it does not occur. The electrostatic approach can account for the bioavailability of anions, whereas the biotic ligand model cannot, and it can account for interactions among cations when competition does not occur. Finally, a simplified procedure is presented for the computation of ψ_(PM) for plants, and the possible use of ψ_(PM) in a general assessment of the bioavailability of ions is considered.
机译:质膜(PMs)带负电,这会产生负的PM表面电势(ψ_(PM)),该电势也由沐浴介质的离子组成控制。 ψ_(PM)控制离子在PM表面与介质之间的分布,从而使负电势增加阳离子的表面活性,并降低阴离子的表面活性。所有阳离子都会降低ψ_(PM)的负电性,这些共同离子按以下顺序有效:Al〜(3+)> H〜+> Cu〜(2+)> Ca〜(2+)≈Mg〜( 2+)> Na〜+≈K〜+。这些离子,尤其是H〜+,Ca〜(2+)和Mg〜(2+)已知会减少阳离子的吸收和生物有效性,并对阴离子具有相反的作用。毒理学家通常将有毒阳离子(通常为金属)与修饰阳离子(通常为H〜+,Ca〜(2+)和Mg〜(2+))之间的相互作用解释为对PM表面配体结合位点的竞争。在该生物配体模型中很少考虑ψ_(PM),该模型结合了游离离子活性模型。本文的论点是,__(PM)效应对生物利用度的影响可能比针对特定地点的竞争更为重要。此外,ψ_(PM)效应即使在不出现竞争的情况下也可能给出错误的外观。静电方法可以解释阴离子的生物利用度,而生物配体模型则不能,并且可以解释不发生竞争时阳离子之间的相互作用。最后,提出了一种简化的方法来计算植物的ψ_(PM),并考虑了在离子总体生物利用度的一般评估中可能使用的ψ_(PM)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号