首页> 外文期刊>Environmental Science & Technology >Challenges and constraints of using oxygen cathodes in microbial fuel cells
【24h】

Challenges and constraints of using oxygen cathodes in microbial fuel cells

机译:在微生物燃料电池中使用氧阴极的挑战和限制

获取原文
获取原文并翻译 | 示例
       

摘要

The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(II) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm-2 (pH 3.3, E-cathode = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (Delta E = E-anode-E-cathode) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm-2 increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio c(Na+, K+)/c(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.
机译:根据它们在微生物燃料电池中的应用,讨论了氧还原催化剂(铂,热解铁(II)酞菁(pyr-FePc)和四甲氧基苯基卟啉钴(pyr-CoTMPP))的性能。结果表明,微生物燃料电池的物理和化学环境严重影响了电催化氧还原反应的热力学和动力学。中性pH值与低缓冲容量和低离子浓度相结合会严重影响阴极性能并限制燃料电池的功率输出。因此,当缓冲液浓度从500 mM降低到50 mM时,电流模拟极化实验中的极限电流密度从1.5 mA cm(-2)降低到0.6 mA cm-2(pH 3.3,E-阴极= 0 V)。阴极限制被MFC内阻的增加所叠加,而内阻的增加实际上有助于功率输出的降低。例如,型号MFC的最大功率输出从2.3 mW降低到1.5 mW,降低了35%,而电极电势之间的差异(ΔE = E-阳极-E-阴极)仅降低了10%。 pyr-FePc的催化剂负载量从0.25增加到2 mg cm-2,使阴极电流密度从0.4增加到0.97 mA cm(-2)(pH 7,50 mM磷酸盐缓冲液)。因此,这种廉价催化剂的负载的增加代表了一种改善微生物燃料电池中阴极性能的合适手段。与相对较高的碱金属阳离子水平相比,MFC中的质子浓度较低(在pH 7、50 mM磷酸盐缓冲液中,比率c(Na +,K +)/ c(H +)= 5 x E5),碱金属离子通过质子交换膜在从阳极到阴极室的电荷平衡离子通量中起主要作用。这导致在阳极室和阴极室之间形成pH梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号