首页> 外文期刊>Environmental Science & Technology >XANES Evidence for Oxidation of Cr(lll) to Cr(VI) by Mn-Oxides in a Lateritic Regolith Developed on Serpentinized Ultramafic Rocks of New Caledonia
【24h】

XANES Evidence for Oxidation of Cr(lll) to Cr(VI) by Mn-Oxides in a Lateritic Regolith Developed on Serpentinized Ultramafic Rocks of New Caledonia

机译:XANES证据表明,新喀里多尼亚蛇纹石化的超镁铁质岩中的锰红壤中的锰氧化物将Cr(III)氧化为Cr(VI)。

获取原文
获取原文并翻译 | 示例
           

摘要

Although several laboratory studies showed that Mn-oxides are capable of oxidizing Cr(III) to Cr(VI), very few have reported evidence for such a reaction in natural systems. This study presents new evidence for this redox reaction between Cr(III) and Mn-oxides in a lateritic regolith developed on ultramafic rocks in New Caledonia. The studied lateritic regolith presents several units with contrasting amounts of major (Fe, Al, Si, and Mg) and trace (Mn, Cr, Ni, Co) elements, which are related to varying mineralogical compositions. Bulk XANES analyses show the occurrence of Cr(VI) (up to 20 wt % of total chromium) in the unit of the regolith which is also enriched in Mn (up to 21.7 wt % MnO), whereas almost no Cr(VI) is detected elsewhere. X-ray powder diffraction indicates that the large amounts of Mn in this unit of the regolith are due to the occurrence of Mn-oxides (identified as a mixture of asbolane, lithiophorite and birnessite) and Mn K-edge XANES data indicate that Mn occurs mainly as Mn(IV) in this unit although small amounts of Mn(III) could also be detected. These results strongly suggest a direct role of the Mn-oxides on the occurrence of Cr(VI) through a redox reaction between Cr(III) and Mn(IV) and/or Mn(III). Owing to the much larger toxicity and solubility of Cr(VI),rnsuch a co-occurrence of Cr and Mn-oxides in these soils could then represent an important risk for the environment However, the significant amounts of Cr(VI) released after reacting the samples from the studied sequence with a 0.1 M (NH)_4H_2PO_4 solution, designed to remove tightly sorbed chromate species, suggest that Cr(VI) mainly occurs as sorption complexes. This hypothesis is reinforced by spatially resolved XANES analyses, which show that Cr(VI) is associated with both Mn- and Fe-oxides, and especially at the boundary between these two mineral species. Such a distribution of Cr(VI) suggests a possible readsorption of Cr(VI) onto surrounding Fe-oxyhydroxides (mainly goethite) after oxidation by the Mn(IV)-oxides. These results, added to leaching tests with a 0.01 M CaCl_2 solution indicative of low exchangeability of Cr in the investigated samples, suggest that secondary sorption reactions onto Fe-oxides might significantly decrease the environmental impact of the oxidation of Cr(III) to Cr(VI) by Mn-oxides.
机译:尽管一些实验室研究表明Mn氧化物能够将Cr(III)氧化为Cr(VI),但是很少有人报道在自然系统中发生这种反应的证据。这项研究为新喀里多尼亚超镁铁质岩石上发育的红土重晶石中Cr(III)和Mn-氧化物之间的氧化还原反应提供了新的证据。所研究的红土块岩呈现出几个单元,这些单元的主要元素(铁,铝,硅和镁的含量)和痕量元素(锰,铬,镍,钴)的含量不同,这与不同的矿物组成有关。大量XANES分析表明,在重晶石单元中也出现了Cr(VI)(占总铬的20%(重量)),其中也富含Mn(高达21.7wt%的MnO),而几乎没有Cr(VI)在其他地方检测到。 X射线粉末衍射表明,在该重晶石的这一单元中大量的Mn是由于Mn氧化物(鉴定为阿斯波烷,硫代硫代磷灰石和水钠锰矿的混合物)的出现,而Mn K边缘XANES数据表明存在Mn。尽管也可以检测到少量的Mn(III),但在该单元中主要是Mn(IV)。这些结果强烈暗示了锰氧化物通过Cr(III)与Mn(IV)和/或Mn(III)之间的氧化还原反应对Cr(VI)的发生具有直接作用。由于Cr(VI)的毒性和溶解度更大,因此在这些土壤中同时存在Cr和Mn氧化物可能对环境构成重大风险。但是,反应后释放出大量Cr(VI)用0.1 M(NH)_4H_2PO_4溶液从研究序列中取样,该溶液旨在去除紧密吸附的铬酸盐种类,这表明Cr(VI)主要作为吸附复合物出现。通过空间分辨的XANES分析进一步证实了这一假设,该分析表明Cr(VI)与Mn和Fe氧化物都相关,尤其是在这两种矿物质之间的边界处。 Cr(VI)的这种分布表明,在被Mn(IV)-氧化物氧化后,Cr(VI)可能会重新吸附到周围的Fe-羟基氧化物(主要是针铁矿)上。这些结果,再加上用0.01 M CaCl_2溶液进行的浸出测试,表明研究样品中Cr的交换性低,表明对Fe-氧化物的二次吸附反应可能会大大降低Cr(III)氧化为Cr( VI)通过Mn-氧化物。

著录项

  • 来源
    《Environmental Science & Technology》 |2009年第19期|7384-7390|共7页
  • 作者单位

    Institut de Mineralogie et de Physique des Milieux Condenses (IMPMC), UMR CNRS 7590 Universite Pierre et Marie Curie Universite Paris Diderot, IPGP, 140 rue de Lourmel, 75015,Paris, France;

    Institut de Mineralogie et de Physique des Milieux Condenses (IMPMC), UMR CNRS 7590 Universite Pierre et Marie Curie Universite Paris Diderot, IPGP, 140 rue de Lourmel, 75015,Paris, France;

    Institut de Mineralogie et de Physique des Milieux Condenses (IMPMC), UMR CNRS 7590 Universite Pierre et Marie Curie Universite Paris Diderot, IPGP, 140 rue de Lourmel, 75015,Paris, France;

    Sincrotrone Trieste (ELETTRA), Area Science Park, Strada Statale, 34012 Basovizza, Trieste, Italy;

    Sincrotrone Trieste (ELETTRA), Area Science Park, Strada Statale, 34012 Basovizza, Trieste, Italy;

    Stanford Synchrotron Radiation Laboratory, SLAC,2575 Sand Hill Road, MS 69, Menlo Park, California 94025;

    Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement (CEREGE), Universite Aix-Marseille III-CNRS UMR 6635 BP 80 13545 Aix-En-Provence Cedex 4, France;

    Institut de Mineralogie et de Physique des Milieux Condenses (IMPMC), UMR CNRS 7590 Universite Pierre et Marie Curie Universite Paris Diderot, IPGP, 140 rue de Lourmel, 75015,Paris, France;

    Institut de Mineralogie et de Physique des Milieux Condenses (IMPMC), UMR CNRS 7590 Universite Pierre et Marie Curie Universite Paris Diderot, IPGP, 140 rue de Lourmel, 75015,Paris, France;

    Stanford Synchrotron Radiation Laboratory, SLAC,2575 Sand Hill Road, MS 69, Menlo Park, California 94025 Surface and Aqueous Geochemistry Group, Department of Geological and Environmental Sciences, Stanford University,Stanford, California 94305-2115;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号