首页> 外文期刊>Environmental Science & Technology >Photocatalytic Oxidation Mechanism of As(lll) on TiO_2: Unique Role of As(lll) as a Charge Recombinant Species
【24h】

Photocatalytic Oxidation Mechanism of As(lll) on TiO_2: Unique Role of As(lll) as a Charge Recombinant Species

机译:As(III)在TiO_2上的光催化氧化机理:As(III)作为电荷重组物种的独特作用

获取原文
获取原文并翻译 | 示例
       

摘要

Using TiO_2 photocatalyst arsenite, As(lll), can be rapidly oxidized to arsenate, As(V), which is less toxic and less mobile in the aquatic environment Therefore, the TiO_2 UV process can be employed as an efficient pretreatment method for arsenic contaminated water. Since we first reported in 2002 that the superoxide (or hydroperoxyl radical) plays the role of main oxidant of As(lll) in the TiO_2UV process, there has been much debate over the true identity of the major photooxidant among superoxides, holes, and OH radicals. The key issue is centered on why the much stronger OH radicals cannot oxidize As(lll), and it has been proposed that the unique role of As(lll) as an external charge recombination center on the UV-excited TiO_2 particle is responsible for this eccentric mechanism. Although the proposed mechanism has been supported by many experimental evidences, doubts on it were not clearly removed. In this study, we provided direct and undisputed evidence to support the role of As(lll) in the charge recombination dynamics using time-resolved transient absorption spectroscopy. The presence of As(lll) indeed mediated the charge recombination in TiO_2. Under this condition, the role of the OH radical is suppressed because of the null cycle, and the weaker oxidant, superoxide, should prevail. The role of the superoxide has been previously doubted on the basis of the observation that the addition of excess formic acid (hole scavenger that should enhance the production of superoxides) inhibited the photocatalytic oxidation of As(lll). However, this study proved that this was due to the photogeneration of reducing radicals (HCO_2-) that recycle As(V)/As(IV) back to As(lll). It was also demonstrated that the 4-chlorophenol/TiO_2 system under visible light that cannot generate neither OH radicals nor valence band holes converted As(lll) to As(V) through the superoxide pathway.
机译:使用TiO_2光催化剂砷(As(lll))可以快速氧化为砷(As(V)),在水生环境中毒性较小且不易移动,因此,TiO_2 UV工艺可以用作有效的砷污染预处理方法水。自从我们在2002年首次报道超氧化物(或氢过氧自由基)在TiO_2UV工艺中起As(III)的主要氧化剂的作用以来,关于主要氧化物的真实身份在超氧化物,空穴和OH之间的真实身份一直存在很多争论部首。关键问题集中在为何强得多的OH自由基不能氧化As(III)的问题上,有人提出As(III)作为紫外线激发的TiO_2颗粒上外部电荷复合中心的独特作用是造成这种情况的原因。偏心机构。尽管所提出的机制已得到许多实验证据的支持,但仍未明确消除对此机制的疑虑。在这项研究中,我们提供了直接和无可争议的证据来支持使用时间分辨瞬态吸收光谱法研究As(III)在电荷重组动力学中的作用。 As(III)的存在确实介导了TiO_2中的电荷复合。在这种条件下,由于无效循环,OH自由基的作用受到抑制,应以较弱的氧化剂超氧化物为准。基于以下观察,人们已经怀疑过氧化物的作用:过量的甲酸(空穴清除剂应增强过氧化物的产生)的添加会抑制As(III)的光催化氧化。然而,这项研究证明这是由于还原性自由基(HCO_2-)的光生,该自由基将As(V)/ As(IV)循环回As(III)。还证明了在不产生OH自由基和价带孔的可见光下的4-氯苯酚/ TiO_2系统通过超氧化物途径将As(III)转化为As(V)。

著录项

  • 来源
    《Environmental Science & Technology》 |2010年第23期|p.9099-9104|共6页
  • 作者单位

    School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea;

    School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea;

    Green Growth Laboratory, Korea Electric Power Research Institute, Daejeon 305-706, Korea;

    The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 81, Ibaraki,Osaka 567-0047, Japan;

    The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 81, Ibaraki,Osaka 567-0047, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:04:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号