首页> 外文期刊>Environmental Science & Technology >Modeling Aerobic Biodegradation in the Capillary Fringe
【24h】

Modeling Aerobic Biodegradation in the Capillary Fringe

机译:毛细边缘有氧生物降解建模

获取原文
获取原文并翻译 | 示例
           

摘要

Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.
机译:需氧生物降解可减轻挥发性地下污染物的蒸气入侵。对氯苯以及氯苯,1,2-二氯苯和1,4-二氯苯的混合物的污染源进行的实验室柱研究表明,在毛细管边缘附近具有高生物量和低底物浓度的薄反应区中,污染物迅速降解。通过包括氧,底物和依赖生物量的生物降解动力学以及扩散运输过程的模型很好地表征了这种行为。推导了一种分析解决方案,为简化反应动力学以及在稳态下近似反应区位置和质量通量关系提供了理论支持。结果表明,毛细条纹中的有氧自然衰减作用可防止污染物在不饱和区中迁移。该解决方案表明,增加进入塔的污染物质量通量会创建一个较薄的反应区,并将其推向氧气边界,从而导致距氧气源的距离更短,并且氧气质量通量更大,从而平衡了污染物质量通量。结果,需氧生物降解可将毛细管边缘和不饱和区内的高污染物浓度降低到低水平。结果与在非饱和区界面处薄的反应层的观察结果一致。该模型考虑了生物质,同时包括了毛细边缘和不饱和区的生物降解,并清楚地表明,能够将污染物用作电子供体的微生物群落可能导致毛细边缘和不饱和区的瞬时降解动力学。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第3期|1501-1510|共10页
  • 作者单位

    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States;

    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States;

    Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.;

    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号