首页> 外文期刊>Environmental Science & Technology >Modeling the Transport of the ‘New-Horizon’ Reduced Graphene Oxide-Metal Oxide Nanohybrids in Water-Saturated Porous Media
【24h】

Modeling the Transport of the ‘New-Horizon’ Reduced Graphene Oxide-Metal Oxide Nanohybrids in Water-Saturated Porous Media

机译:模拟“ New-Horizo​​n”还原的氧化石墨烯-金属氧化物纳米杂化物在水饱和多孔介质中的传输

获取原文
获取原文并翻译 | 示例
       

摘要

Little is known about the fate and transport of the “new-horizon” multifunctional nanohybrids in the environment. Saturated sand-packed column experiments (n = 66) were therefore performed to investigate the transport and retention of reduced graphene oxide (RGO)—metal oxide (Fe_(3)O_(4), TiO_(2), and ZnO) nanohybrids under environmentally relevant conditions (mono- and divalent electrolytes and natural organic matter). Classical colloid science principles (Derjaguin–Landau–Verwey–Overbeek (DLVO) theory and colloid filtration theory (CFT)) and mathematical models based on the one-dimensional convection-dispersion equation were employed to describe and predict the mobility of RGO-Fe_(3)O_(4), RGO-TiO_(2), and RGO-ZnO nanohybrids in porous media. Results indicate that the mobility of the three nanohybrids under varying experimental conditions is overall explainable by DLVO theory and CFT. Numerical simulations suggest that the one-site kinetic retention model (OSKRM) considering both time- and depth-dependent retention accurately approximated the breakthrough curves (BTCs) and retention profiles (RPs) of the nanohybrids concurrently; whereas, others (e.g., two-site retention model) failed to capture the BTCs and/or RPs. This is primarily because blocking BTCs and exponential/hyperexponential/uniform RPs occurred, which is within the framework of OSKRM featuring time- (for kinetic Langmuirian blocking) and depth-dependent (for exponential/hyperexponential/uniform) retention kinetics. Employing fitted parameters (maximum solid-phase retention capacity: S _(max) = 0.0406–3.06 cm~(3)/g; and first-order attachment rate coefficient: k _(a) = 0.133–20.6 min~(–1)) extracted from the OSKRM and environmentally representative physical variables (flow velocity (0.00441–4.41 cm/min), porosity (0.24–0.54), and grain size (210–810 μm)) as initial input conditions, the long-distance transport scenarios (in 500 cm long sand columns) of the three nanohybrids were predicted via forward simulation. Our findings address the existing knowledge gap regarding the impact of physicochemical factors on the transport of the next-generation, multifunctional RGO—metal oxide nanohybrids in the subsurface.
机译:人们对环境中“新地平线”多功能纳米杂交体的命运和运输知之甚少。因此,进行了饱和砂填充柱实验(n = 66),以研究还原型氧化石墨烯(RGO)-金属氧化物(Fe_(3)O_(4),TiO_(2)和ZnO的迁移和保留)在环境相关的条件下(单价和二价电解质和天然有机物)的纳米杂化物。经典的胶体科学原理(Derjaguin–Landau–Verwey–Overbeek(DLVO)理论和胶体过滤理论(CFT))和基于一维对流弥散方程的数学模型用于描述和预测RGO-Fe_(的迁移率) 3)多孔介质中的O_(4),RGO-TiO_(2)和RGO-ZnO纳米杂化物。结果表明,通过DLVO理论和CFT可以完全解释三种纳米杂化物在不同实验条件下的迁移率。数值模拟表明,同时考虑时间和深度依赖的保留的单点动力学保留模型(OSKRM)可以准确地同时逼近纳米杂化物的穿透曲线(BTC)和保留曲线(RP)。而其他(例如,两站点保留模型)无法捕获BTC和/或RP。这主要是因为发生了阻塞BTC和指数/超指数/均匀RP,这在OSKRM的框架内,具有时间(对于动力学Langmuirian阻塞)和深度相关(对于指数/超指数/均匀)的保留动力学。使用拟合参数(最大固相保留能力: S _(max)= 0.0406–3.06 cm〜(3)/ g;一阶附着率系数: k _(a)= 0.133–从OSKRM中提取20.6 min〜(–1))和具有环境代表性的物理变量(流速(0.00441-4.41 cm / min),孔隙率(0.24-0.54)和晶粒尺寸(210-810μm))作为初始输入条件,通过正演模拟预测了三种纳米杂交体的长距离运输情况(在500 cm长的沙柱中)。我们的发现解决了有关理化因素对下一代多功能RGO(金属氧化物纳米杂化物在地下)运输的影响方面存在的知识空白。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第8期|4610-4622|共13页
  • 作者单位

    National Research Council and Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Ada, Oklahoma 74820, United States;

    Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, United States;

    Department of Environmental Engineering, Kyungpook National University, Buk-gu, Daegu 41566, South Korea;

    Department of Civil and Environmental Engineering, Korea Army Academy, Young-Cheon, Gyeongbuk 38900, South Korea;

    Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, Jiangsu Province, China;

    Department of Civil, Structural, and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States;

    National Research Council and Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Ada, Oklahoma 74820, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:56:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号