首页> 外文期刊>Environmental Science & Technology >Facet-Dependent Adsorption and Fractionation of Natural Organic Matter on Crystalline Metal Oxide Nanoparticles
【24h】

Facet-Dependent Adsorption and Fractionation of Natural Organic Matter on Crystalline Metal Oxide Nanoparticles

机译:基晶金属氧化物纳米粒子上天然有机物的刻面吸附和分馏

获取原文
获取原文并翻译 | 示例
           

摘要

Natural organic matter (NOM) and crystalline metal oxide nanoparticles are both prevalent in natural aquatic environments, and their interactions have important environmental and biogeochemical implications. Here, we show that these interactions are significantly affected by an intrinsic property of metal oxide nanocrystals, the exposed facets. Both anatase (TiO_2) and hematite (α-Fe_2O_3) nanocrystals, representing common engineered and naturally occurring metal oxides, exhibited apparent facet-dependent adsorption of humic acid and fulvic acid. This facet-dependent binding was primarily driven by surface complexation between the NOM carboxyl groups and surficial metal atoms. Thus, the adsorption affinity of different-faceted nanocrystals was determined by the atomic arrangements of crystal facets that controlled the activity of metal atoms and, consequently, the ligand exchange and binding configuration of the carboxyl groups in the first hydration shell of nanocrystals. Distinct facet-dependent fractionation patterns were observed during adsorption of NOM components, particularly the low-molecular-weight and photorefractory constituents. The molecular fractionation of NOM between water and metal oxide nanoparticles was dictated by the combined effects of facet-dependent metal complexation, hydrophobic interaction, and steric hindrance and may significantly influence the NOM-driven processes occurring both in aqueous phases and at water-nanoparticle interfaces.
机译:天然有机物(NOM)和结晶金属氧化物纳米颗粒在天然水生环境中普遍存在,它们的相互作用具有重要的环境和生物地球化学意义。在这里,我们表明这些相互作用受金属氧化物纳米晶体的固有性质的显着影响,暴露的刻面。锐钛矿(TiO_2)和赤铁矿(α-Fe_2O_3)纳米晶体,代表共同的工程化和天然存在的金属氧化物,表现出明显的蜂窝酸和富乙酸的刻面依赖性吸附。该方面依赖性结合主要由NOM羧基和表面金属原子之间的表面络合驱动。因此,不同刻面纳米晶体的吸附亲和力通过控制金属原子的活性的晶面的原子布置来确定,因此,羧基在纳米晶体的第一水合壳中的配体交换和结合构型。在吸附NOM组分的吸附过程中,特别是低分子量和光致折衷组成分期间观察到不同的刻面依赖性分馏模式。水和金属氧化物纳米颗粒之间的MOL的分子分级通过刻面依赖金属络合,疏水相互作用和空间阻断的组合作用决定,并且可以显着影响在水相和水纳米粒子界面中发生的NOM驱动过程。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第14期|8622-8631|共10页
  • 作者单位

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

    College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号