首页> 外文期刊>Environmental Science & Technology >Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management
【24h】

Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management

机译:水合电子对全氟和多氟烷基物质(PFAS)的脱氟:结构依赖性及其对PFAS修复和管理的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates critical structure reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While CnF2n+1-COO- with variable fluoroalkyl chain lengths (n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric CnF2n+1-CH2CH2-COO- and CnF2n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.
机译:这项研究调查了34种代表性的全氟和多氟烷基物质(PFAS)内通过紫外线产生的水合电子进行脱氟的关键结构反应性关系。尽管具有可变氟烷基链长度(n = 2至10)的CnF2n + 1-COO-表现出相似的速率和程度的母体化合物衰变和脱氟,端粒CnF2n + 1-CH2CH2-COO-和CnF2n + 1-SO3的反应-显示出对氟代烷基链长度的明显依赖性。交叉比较实验结果,包括特定PFAS类别的不同衰减和脱氟速率,大多数PFAS结构的不完全脱氟以及CF3COO-令人惊讶的100%脱氟,导致阐明了有关PFAS降解的新机制。对所有PFAS结构的CF键解离能(BDE)的理论计算揭示了以下方面的密切关系:(i)衰变和脱氟的速率和程度,(ii)头部官能团,(iii)氟烷基链长,和(iv)低BDE的CF键的位置和数量在计算带有一个额外电子的PFAS结构的几何优化过程中,特定键的自发裂解和高分辨率质谱的产物分析进一步支持了这些关系。多种反应途径,包括H / F交换,末端官能团的解离以及脱羧引发的HF消除和水解,导致形成可变的脱氟产物。 C-F键裂解的选择性和难易程度在很大程度上取决于分子结构。这些发现为开发PFAS处理工艺和技术以破坏广泛的PFAS污染物以及设计含氟化合物配方以避免向市场释放顽固的PFAS提供了关键信息。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第7期|3718-3728|共11页
  • 作者单位

    Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA;

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;

    Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA;

    Univ Illinois, Metabol Lab Roy J Carver Biotechnol Ctr, Urbana, IL 61801 USA;

    Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA|Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA;

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA|Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA;

    Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号