...
首页> 外文期刊>Engineering Applications of Artificial Intelligence >A hybrid switching predictive controller with proportional integral derivative gains and GMDH neural representation of automotive engines for coldstart emission reductions
【24h】

A hybrid switching predictive controller with proportional integral derivative gains and GMDH neural representation of automotive engines for coldstart emission reductions

机译:具有比例积分微分增益和汽车发动机GMDH神经表示的混合切换预测控制器,用于减少冷启动排放

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, a high-performance predictive controller is developed for automotive coldstart emission reductions. The proposed control scheme combines a hybrid switching predictive controller (HSPC) with proportional integral derivative (PID) gains to simultaneously minimize the cumulative hydrocarbon emissions (HC_(cum)) and the control input variations for a given engine during the coldstart operation. It is essential to use a sufficiently accurate surrogate meta-representation of the real engine within this model-based controller to predict the states of the plant and impart proper control commands to the system. The existing studies in the research literature have clearly demonstrated that automotive engines have a highly transient nonlinear behavior during coldstart periods and different disturbances can affect their operations. To cope with the mentioned difficulties, several coldstart experiments are performed to capture a comprehensive database for the considered engine. Thereafter, a powerful knowledge-based black-box meta-modeling tool, known as group method data handling (GMDH), is adopted to have a neural representation of the engine's coldstart behavior. As a real-time controller, the proposed PID-based HSPC requires a fast and robust solver to calculate the gains of PID in a computationally efficient manner. Here, a multivariate quadratic fit-sectioning algorithm (MQFSA) is proposed to deterministically determine the control commands. Other than the considered online optimizer, a powerful chaos-enhanced evolutionary algorithm (CEA) is used to heuristically optimize the prediction horizon (H_P) and control commands horizon (H_U) to achieve the best results. It is demonstrated that using such an optimizer, instead of trial-and-errors, to heuristically set the control and plant prediction horizon lengths is an effective strategy. Finally, several comparative studies are conducted to further indicate the efficacy of the proposed PID-based HSPC for the automotive coldstart control problem.
机译:在这项研究中,开发了一种用于汽车冷启动排放量减少的高性能预测控制器。所提出的控制方案将混合开关预测控制器(HSPC)与比例积分微分(PID)增益相结合,以在冷启动操作期间同时最小化给定发动机的累计碳氢化合物排放量(HC_(cum))和控制输入变化。必须在此基于模型的控制器中使用真实发动机的足够精确的替代元表示,以预测工厂的状态并将适当的控制命令传递给系统。研究文献中的现有研究清楚地表明,汽车发动机在冷启动期间具有高度瞬态的非线性行为,并且不同的干扰会影响其运行。为了解决上述困难,进行了几次冷启动实验,以获取针对所考虑发动机的全面数据库。此后,采用了功能强大的基于知识的黑匣子元建模工具,称为组方法数据处理(GMDH),以神经网络表示发动机的冷启动行为。作为实时控制器,所提出的基于PID的HSPC需要快速而强大的求解器,以高效计算的方式计算PID的增益。在此,提出了一种多元二次拟合分段算法(MQFSA)来确定性地确定控制命令。除了被认为是在线优化器之外,强大的混沌增强进化算法(CEA)用于启发式优化预测范围(H_P)和控制命令范围(H_U),以获得最佳结果。事实证明,使用这种优化器而不是反复试验来启发式地设置控制和工厂预测范围的长度是一种有效的策略。最后,进行了一些比较研究,以进一步表明所提出的基于PID的HSPC在汽车冷启动控制问题上的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号