首页> 外文期刊>Engineering analysis with boundary elements >A BEM analysis of fracture mechanics in 2D anisotropy piezoelectric solids
【24h】

A BEM analysis of fracture mechanics in 2D anisotropy piezoelectric solids

机译:二维各向异性压电固体中断裂力学的BEM分析

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a single-domain boundary element method (BEM) analysis of fracture mechanics in 2D anisotropic piezoelectric solids. In this analysis, the extended displacement (elastic displacement and electrical potential) and extended traction (elastic traction and electrical displacement) integral equations are collocated n the outside boundary (no-crack boundary) of the problem and on one side of the crack surface, respectively. The Green's functions for the anisotropy zoelectric solids in an infinite plane, a half plane, and two joined dissimilar half-planes are also derived using the complex variable function method. The extrapolation of the extended relative crack displacement is employed to calculate the extended `stress intensity factors (SIFs), i.e., K_I, K_II, K_III and K_IV. For a finite crack in an infinite anisotropy piezoelectric solid, the extended SIFs obtained with the current numeric formulation were found to be very close to the exact solutions. For a central and inclined crack in a finite and anisotropy piezoelectric solid, we found that both the coupled and uncoupled (i.e., the piezoelectric coefficient e_ijk=0) cases predict very similar stress intensity factors K_I and K_II when a uniform tension σ_yy is applied, and very similar electric displacement intensity factor K_IV when a uniform electrical displacement D_y is applied. However, the relative crack displacement and electrical potential along the crack surface are quite different for the coupled fna uncoupled cases. Furthermove, for a inclined crack within a finite domain, we found that wh
机译:本文提出了二维各向异性压电固体中断裂力学的单域边界元方法(BEM)分析。在此分析中,扩展位移(弹性位移和电势)和扩展牵引力(弹性牵引和电位移)积分方程位于问题的外边界(无裂纹边界)且位于裂纹表面的一侧,分别。还使用复变函数方法导出了无限平面,半平面和两个相连的不同半平面中的各向异性压电固体的格林函数。使用扩展的相对裂纹位移的外推法来计算扩展的应力强度因子(SIF),即K_I,K_II,K_III和K_IV。对于无限各向异性压电固体中的有限裂纹,发现使用当前数值公式获得的扩展SIF非常接近精确解。对于有限和各向异性压电固体中的中心裂纹和倾斜裂纹,我们发现在施加均匀张力σ_yy时,耦合和非耦合(即压电系数e_ijk = 0)的情况都预测出非常相似的应力强度因子K_I和K_II,当施加均匀的电位移D_y时,电位移强度因子K_IV非常相似。但是,在非耦合情况下,沿裂纹表面的相对裂纹位移和电位有很大不同。进一步地,对于有限域内的倾斜裂纹,我们发现

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号