首页> 外文期刊>Energy >Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier-Solid Oxide Fuel Cells-Gas Turbine systems
【24h】

Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier-Solid Oxide Fuel Cells-Gas Turbine systems

机译:高效热管集成生物质气化炉-固体氧化物燃料电池-燃气轮机系统的热力学建模与评估

获取原文
获取原文并翻译 | 示例
           

摘要

This study deals with the thermodynamic modeling of biomass Gasifier-SOFC (Solid Oxide Fuel Cell)-GT (Gas Turbine) systems on a small scale (100 We). Evaluation of an existing biomass Gasifier SOFC-GT system shows highest exergy losses in the gasifier, gas turbine and as waste heat. In order to reduce the exergy losses and increase the system's efficiency, improvements are suggested and the effects are analyzed. Changing the gasifying agent for air to anode gas gave the largest increase in the electrical efficiency. However, heat is required for an allothermal gasification to take place. A new and simple strategy for heat pipe integration is proposed, with heat pipes placed in between stacks in series, rather than the widely considered approach of integrating the heat pipes within the SOFC stacks. The developed system based on a Gasifier-SOFC-GT combination improved with heat pipes and anode gas recirculation, increases the electrical efficiency from approximately 55%-72%, mainly due to reduced exergy losses in the gasifier. Analysis of the improved system shows that operating the system at possibly higher operating pressures, yield higher efficiencies within the range of the operating pressures studied. Further the system was scaled up with an additional bottoming cycle achieved electrical efficiency of 73.61%. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项研究涉及小规模(100 We)的生物质气化炉-SOFC(固体氧化物燃料电池)-GT(燃气轮机)系统的热力学建模。对现有生物质气化炉SOFC-GT系统的评估显示,气化炉,燃气轮机以及废热的最大火用损失。为了减少火用损失并提高系统效率,提出了改进建议并分析了其影响。将空气的气化剂改为阳极气可以最大程度地提高电效率。但是,发生地热气化需要热量。提出了一种新的简单的热管集成策略,将热管串联放置在烟囱之间,而不是广泛考虑的将热管集成在SOFC烟囱中的方法。基于气化炉-SOFC-GT组合的已开发系统通过热管和阳极气体再循环得到改进,将电效率从大约55%-72%提高了,这主要是由于减少了气化炉内的火用损失。对改进系统的分析表明,在可能更高的工作压力下运行系统会在所研究的工作压力范围内产生更高的效率。此外,该系统按比例增加了额外的触底循环,从而实现了73.61%的电效率。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2016年第15期|751-764|共14页
  • 作者单位

    Delft Univ Technol, Energy Technol Sect, Leeghwaterstr, NL-2628 CB Delft, Netherlands|German Aerosp Ctr DLR, Inst Engn Thermodynam, 38-40 Pfaffenwaldring, Stuttgart, Germany;

    Delft Univ Technol, Energy Technol Sect, Leeghwaterstr, NL-2628 CB Delft, Netherlands;

    Delft Univ Technol, Energy Technol Sect, Leeghwaterstr, NL-2628 CB Delft, Netherlands;

    Delft Univ Technol, Energy Technol Sect, Leeghwaterstr, NL-2628 CB Delft, Netherlands;

    Delft Univ Technol, Energy Technol Sect, Leeghwaterstr, NL-2628 CB Delft, Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solid Oxide Fuel Cell; Gas Turbine; Biomass gasification; Heat pipes; Exergy;

    机译:固体氧化物燃料电池燃气轮机生物质气化热管热能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号