...
首页> 外文期刊>Energy >How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)
【24h】

How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)

机译:动态氨合成过程有多敏感? 动态Haber-Bosch过程的全局敏感性分析(灵活季节性储存)

获取原文
获取原文并翻译 | 示例
           

摘要

The transition towards a sustainable energy sector depends on how we safely manage the transport and storage of energy to keep up with the demand. Large storage (TWh) of renewable energy can be accomplished by producing an energy carrier like ammonia. This power-to-ammonia production process overly depends on the stability of the ammonia reactor where any variations induced by uncertainties could have a large impact on the performance during its dynamic operations. To determine the effect of these variations, we need to identify which of the uncertainties have to be scrutinized during model design. The current work carries out the development of a dynamic Haber-Bosch process, implementing uncertainties in the model and performing an uncertainty quantification analysis on the process. Sub-sequently, the sensitivity indices quantify the impact of these uncertainties on the design during ramp -up. The global sensitivity analysis indicated that the reactor inlet temperature has the most considerable impact on the performance during ramp-up, where the hydrogen/nitrogen ratio has the second most significant impact. We see that the uncertainty on the reactor inlet temperature dominates (87.8%) the overall standard deviation of the ammonia production. More precise control over the inlet temperature could reduce this impact on the standard deviation. The work can be extended by including a hydrogen and nitrogen production process while powering the full process with renewable power. We can then measure the effect of coupling renewables directly to the dynamic power-to-ammonia process and optimize the design under uncertainty. (c) 2021 Elsevier Ltd. All rights reserved.
机译:向可持续能源部门过渡取决于我们如何安全地管理运输和储存能量以跟上需求。可再生能源的大储存(TWH)可以通过生产氨化等能量载体来实现。这种功率对氨生产过程依赖于氨反应器的稳定性,其中不确定因子诱导的任何变化可能对动态操作期间的性能产生很大影响。为了确定这些变化的效果,我们需要在模型设计期间识别必须仔细审查哪些不确定性。目前的工作执行了动态Haber-Bosch工艺的发展,在模型中实施不确定性并对该过程进行不确定性量化分析。次序,灵敏度指数量化了在斜坡期间对设计的影响。全局敏感性分析表明,反应器入口温度对升压期间的性能具有最相当大的影响,其中氢/氮比具有第二个最大影响。我们看到反应堆入口温度的不确定性主导了(87.8%)氨生产的总标准偏差。对入口温度的更精确控制可以减少对标准偏差的影响。通过包括氢气和氮生产过程,可以通过包括可再生能力的全部过程来延长工作。然后,我们可以测量可再生能源直接耦合到动态功率 - 氨过程的效果,并在不确定度下优化设计。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第1期|121016.1-121016.11|共11页
  • 作者单位

    Vrije Univ Brussel Fluid & Thermal Dynam FLOW Pleinlaan 2 B-1050 Brussels Belgium|Vrije Univ Brussel VUB Combust & Robust Optimizat Grp BURN B-1050 Brussels Belgium|Univ Libre Bruxelles ULB B-1050 Brussels Belgium|Univ Libre Bruxelles ULB AeroThermo Mech Dept ATM Ave Franklin Roosevelt 50 B-1050 Brussels Belgium;

    Vrije Univ Brussel VUB Combust & Robust Optimizat Grp BURN B-1050 Brussels Belgium|Univ Libre Bruxelles ULB B-1050 Brussels Belgium|Univ Libre Bruxelles ULB AeroThermo Mech Dept ATM Ave Franklin Roosevelt 50 B-1050 Brussels Belgium;

    Univ Catholique Louvain UCLouvain Inst Mech Mat & Civil Engn iMMC Pl Levant 2 B-1348 Louvain La Neuve Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stochastic dynamic systems; Uncertaintyquantification; Haber-bosch process; Seasonal hydrogen storage; Aspen plus dynamics;

    机译:随机动态系统;不确定性Quantification;Haber-Bosch工艺;季节性储氢;Aspen Plus Dynamics;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号