首页> 外文期刊>Energy >Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors
【24h】

Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors

机译:高/纳米多孔介电材料导热系数的预测:理论模型和影响因素

获取原文
获取原文并翻译 | 示例
           

摘要

With the stupendous latent of microscale and nanoscale technologies in energy conversion and utili-zation, the design and analysis of porous dielectric materials with open cells have required a more ac-curate calculation of the radiative thermal conductivity. This work introduces a mathematical model to accurately calculate the radiative thermal conductivity of micro/nanoscale porous open cell structures. Due to the limitations of the existing radiative thermal conductivity models, a full-scale method based on the Rosseland diffusion equation is proposed. Combining this full-scale Rosseland diffusion equation and fractal thermal conduction methods, the predicted total thermal conductivity values were well matched with the experimental results for various microscale and nanoscale porous open cell dielectric materials, with less than 15% error. Besides, seven influential factors on the thermal conductivity including cell size, porosity, cellular pore shape, volume specific surface area, temperature, refractive index, and extinction index were extensively investigated. The results show that the thermal conductivity of porous open cell materials mainly decreased with an increase in extinction index and/or the porous structure's volume specific surface area but increased with increase in temperature. This certainly indicated the potential of the full-scale Rosseland diffusion method for use in the design of specific micro/nanoscale porous dielectric structures like polymer foam in the personal energy management device or the silica aerogel in radiative cooling system. (c) 2021 Elsevier Ltd. All rights reserved.
机译:利用微观和纳米级技术在能量转换和利用中的巨大潜在技术,具有开放电池的多孔介电材料的设计和分析需要更具交流静态的辐射导热率计算。该工作介绍了一种数学模型,可以精确地计算微/纳米级多孔开放电池结构的辐射导热率。由于现有辐射热导率模型的局限性,提出了一种基于Rosseland扩散方程的全规模方法。结合这种全尺寸的升降蜥蜴扩散方程和分形热传导方法,预测的总导热率值与各种微观和纳米级多孔开放电池介电材料的实验结果充分匹配,误差小于15%。此外,广泛研究了七种对导热率,孔隙率,细胞孔隙形状,体积比表面积,温度,折射率和消光指数的导热率的影响因素。结果表明,多孔开放电池材料的导热率主要降低,随着消光指数和/或多孔结构的体积比表面积而增加,但随着温度的增加而增加。这肯定表明了用于在个人能量管理装置中的特定微/纳米级多孔介电结构的特定微/纳米级多孔介电结构设计中的全尺寸升兰扩散方法的可能性,或者在辐射冷却系统中的二氧化硅气凝胶中。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第15期|121140.1-121140.17|共17页
  • 作者单位

    Harbin Inst Technol Sch Energy Sci & Engn Harbin 150001 Peoples R China|Univ Toronto Dept Mech Ind Engn Microcellular Plast Mfg Lab MPML 5 Kings Coll Rd Toronto ON M5S 3G8 Canada;

    Harbin Inst Technol Sch Energy Sci & Engn Harbin 150001 Peoples R China;

    Univ Toronto Dept Mech Ind Engn Microcellular Plast Mfg Lab MPML 5 Kings Coll Rd Toronto ON M5S 3G8 Canada;

    Univ Toronto Dept Mech Ind Engn Microcellular Plast Mfg Lab MPML 5 Kings Coll Rd Toronto ON M5S 3G8 Canada;

    Harbin Inst Technol Sch Energy Sci & Engn Harbin 150001 Peoples R China;

    Univ Toronto Dept Mech Ind Engn Microcellular Plast Mfg Lab MPML 5 Kings Coll Rd Toronto ON M5S 3G8 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal conductivity; Micro; nanoscale thermal radiation; Microscale porous open cell material; Nanoscale porous open cell material; Energy management;

    机译:导热率;微型;纳米级热辐射;微观多孔开孔材料;纳米级多孔开放式电池材料;能源管理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号