...
首页> 外文期刊>Energy >Multi-component modeling and simulation of a new photoelectrochemical reactor design for clean hydrogen production
【24h】

Multi-component modeling and simulation of a new photoelectrochemical reactor design for clean hydrogen production

机译:新型光电化学反应器设计的多组分建模与仿真清洁氢气生产

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A novel photoelectrochemical cell design to make a unique reactor is developed and investigated to improve solar to hydrogen conversion efficiency and increase the hydrogen evolution rate. A dome-type photocathode anda circular disc anode are immersed in an alkaline electrolyte of potassium hydroxide in two cylindrical compartments. This new reactor design concerns utilizing the maximum sunlight during the daytime due to the dome shape and increasing the photocathode active area. Four different types of analyses and simulations, including energy, exergy, electrochemical and fluid flow, are performed to investigate the present hydrogen reactor performance using both Engineering Equation Solver and COMSOL software packages. Thermodynamic and electrochemical equations are solved, including mass, energy, entropy, and exergy balance equations, as well as the electrochemical equations. The proposed flow circulation shows a significant effect to avoid the hydrogen bubble coverage phenomenon. The influences of varying the illumined photocathode surface area, the solar irradiance flux, and the quantum efficiency are studied on the hydrogen evolution rate and the solar to hydrogen efficiency. The present hydrogen generation rate and the overall energy system efficiency are 42.1 mg/s, 4.9%, respectively, occurring at solar irradiance of 600 W/m(2) and the illumined area of 840 cm2. The highest hydrogen evolution rate is 60.20 mg/s achieved at the illumined photocathode area of 1200 cm(2). The maximum reactor energy efficiency found to be 6.52% occurred at a quantum efficiency of 20%, respectively. The study results further confirm that increasing the illuminated photocathode area increases the solar to hydrogen energy efficiency and the hydrogen production rates. Moreover, the hydrogen production rates increase with an increase in the solar irradiance. (C) 2021 Elsevier Ltd. All rights reserved.
机译:开发并研究了一种新颖的光电化学电池设计,使独特的反应器开发并研究,以改善太阳能转换效率并增加氢化率。圆顶型光电阴极ANDA在两个圆柱形隔室中浸入氢氧化钾的碱性电解质中。这种新的反应堆设计涉及在白天由于圆顶形状和增加光电阴极有源区时的最大阳光。进行四种不同类型的分析和模拟,包括能量,漏洞,电化学和流体流动,以使用工程方程求解器和COMSOL软件包来研究本发明的氢反应器性能。求解热力学和电化学方程,包括质量,能量,熵和低于平方程,以及电化学方程。所提出的流动循环显示出避免氢气泡覆盖现象的显着效果。研究了氢气进化速率和太阳能氢效率对不同光电阴极表面积,太阳辐照通量和量子效率改变的影响。本发明的氢气产生率和整体能量系统效率分别为42.1mg / s,4.9%,在太阳辐照度下发生600W / m(2)和840cm 2的照明面积。在1200cm(2)的照明光阴极面积上实现的最高氢进化速率为60.20mg / s。发现的最大反应器能量效率为6.52%,分别发生20%的量子效率。该研究结果进一步证实,增加了照明光电阴极区域将太阳能增加到氢能效率和氢生产率。此外,氢生产率随着太阳辐照度的增加而增加。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号