首页> 外文会议>International conference on energy and sustainability >DESIGN OF A NOVEL PHOTOELECTROCHEMICAL REACTOR FOR HYDROGEN PRODUCTION
【24h】

DESIGN OF A NOVEL PHOTOELECTROCHEMICAL REACTOR FOR HYDROGEN PRODUCTION

机译:新型制氢光电子反应器的设计

获取原文

摘要

Photoelectrochemical hydrogen production is one promising way of producing hydrogen without emitting carbon dioxide into the atmosphere. Many semiconductor materials have been investigated over the past four decades although with huge financial constraints on experimental work to many research groups hindering faster research progress. In this paper, a numerical approach characterising the transport phenomena including reaction kinetics at the semiconductor-electrolyte interface is presented to facilitate a better understanding of the reactor with the aim of minimising the associated cost implications. The input photocurrent density is empirically evaluated from the standard reference solar spectra ASTM G173-03 using hematite as the semiconductor material of interest combined with other potential photoelectrodes. Charge transport and electrochemical kinetics in the two electrolyte chambers of a 2-D photoelectrochemical reactor model are simulated using Nernst Planck's and Butler Volmer equations respectively. Pure water (pH neutral) is used as the electrolyte in the model. An ion-permeable membrane is also included in the simulations to isolate the reaction products which would otherwise result in product losses and pose danger under normal operations of the reactor. Despite the slow dissociation rate of water, progress in dissociation and the proton movement from the anolyte to the catholyte were clearly noticed. The evolution of hydrogen and oxygen from the cathode and anode surfaces respectively are also reported. Gas concentration seem to appear close to the electrode surfaces where the reactions occur with the high concentration band progressively widening with the reactor height. Results also show that the ratio of increment in hydrogen concentration doubled that of oxygen which affirms the equilibrium reaction of water splitting. Increase in the photocurrent density also results in increased gas production. These results provide an impetus for further investigations on the behaviour of the reactor to inform future research work.
机译:光电化学制氢是一种在不向大气中排放二氧化碳的情况下产生氢的有前途的方法。在过去的四十年中,已经对许多半导体材料进行了研究,尽管许多研究小组在实验工作上存在巨大的财务制约,阻碍了研究的更快发展。在本文中,提出了一种表征运输现象的数值方法,其中包括在半导体-电解质界面的反应动力学,以促进对反应器的更好理解,以最大程度地减少相关的成本影响。使用赤铁矿作为目标半导体材料并结合其他潜在的光电电极,根据标准参考太阳光谱ASTM G173-03凭经验评估输入光电流密度。分别使用能斯特·普朗克(Nernst Planck)和巴特勒·沃尔默(Butler Volmer)方程对二维光电化学反应器模型的两个电解质腔中的电荷传输和电化学动力学进行了模拟。模型中使用纯水(pH中性)作为电解质。模拟中还包括离子渗透膜,以隔离反应产物,否则将导致产物损失并在反应器的正常运行下造成危险。尽管水的离解速率很慢,但离解的进展以及质子从阳极电解液到阴极电解液的移动都得到了明显的注意。还报道了氢和氧分别从阴极和阳极表面逸出。气体浓度似乎出现在靠近电极表面的位置,在此发生反应,高浓度带随反应器高度的增加而逐渐加宽。结果还表明,氢浓度增加率是氧的增加率的两倍,这证实了水分解的平衡反应。光电流密度的增加也导致气体产生的增加。这些结果为进一步研究反应堆的行为提供了动力,从而为将来的研究工作提供了依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号