...
首页> 外文期刊>Energy >Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics
【24h】

Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics

机译:使用计算流体动力学设计柴油双燃料发动机压缩天然气(CNG)搅拌机的设计改进

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This project carried out a computational fluid dynamics (CFD) analysis using ANSYS Fluent 14.5 software to design a compressed natural gas (CNG)-air mixer for CNG-diesel dual fuel engine. This study aimed to examine the performance of existing secondary fuel premixing controller (SFPMC) commercial mixer and modify its design in terms of air fuel ratio (AFR) and CNG-air mixture homogeneity (CAMH). The design modification of the mixer involved changing the surface of control valve shaft, gas manifold, position and directions of the CNG outlet holes. Results from simulation indicated that the original mixer was unable to control AFR since it changed from 8 at the engine speed of 1000 rpm to 176.39 at the engine speed of 3600 rpm when gas inlet pressure is fixed. However, AFR for the optimized mixer is between 17.21 and 17.4, a range close to stoichiometric AFR with various engine speeds and specific locations of the control valve. In terms of CNG-air mixture homogeneity, the uniformity index (UI) of methane mass fraction (M_(ch4)) at the outlet of the original mixer is between 0.555 when engine speed is 1000 rpm and 0.578 when engine speed is 3600 rpm. However UI of M_(ch4) at the outlet of optimized mixer is between 0.995 when engine speed is 1000 rpm and 0.961 when engine speed is 3600 rpm. That means the CNG and air are homogeneously mixed at the outlet of optimized mixer in comparison with the original mixer. In summary, changing the surface of control valve shaft from cylindrical to conical shape lead to gradually opening the gas way and allow to rising the gas flow rate with increasing of air mass flow rate due to growing of engine speed, so the AFR is controlled in comparison with the origin mixer. Besides, changing the asymmetrically distributed seven gas injection holes near the mixer outlet to equal distribution 10 gas injection holes far from the mixer outlet perpendicularly to the air flow stream resulted in excellent homogeneity of the air and gas mixture in the optimized mixer.
机译:该项目使用ANSYS流畅的14.5软件进行了计算流体动力学(CFD)分析,用于为CNG-Diesel双燃料发动机设计压缩天然气(CNG)-Air混合器。本研究旨在检验现有二级燃料预混控制器(SFPMC)商业搅拌机的性能,并在空燃比(AFR)和CNG空气混合物均匀性(CAMH)方面改变其设计。混合器的设计改进涉及改变CNG出口孔的控制阀轴,气体歧管,位置和方向的表面。仿真结果表明,原来的混合器无法控制AFR,因为当气体入口压力固定时,由于速度为1000 rpm的发动机速度为1000 rpm至176.39的发动机速度。然而,优化混合器的AFR为17.21和17.4之间,范围接近化学计量AFR,具有各种发动机速度和控制阀的特定位置。就CNG-AIR混合物均匀性而言,当发动机速度为1000rpm时,原始混合器的出口处的甲烷质量分数(M_(CH4))的均匀性指数(UI)在0.555之间,当发动机速度为3600rpm时为0.578。然而,当发动机速度为1000 rpm时,优化混合器出口的M_(CH4)的UI在0.995之间,当发动机速度为3600rpm时为0.961。与原始混合器相比,这意味着CNG和空气在优化混合器的出口处均匀混合。总之,将控制阀轴的表面从圆柱形改变为圆锥形,导致逐渐打开气体方式,并允许由于发动机速度的增长而增加气体流量,以增加空气质量流量,因此AFR控制与原始混频器的比较。此外,将混合器出口附近的非对称分布到与垂直于气流流的相等分布10气体喷射孔改变为相等的分布10气体喷射孔导致优化混合器中的空气和气体混合物的优异均匀性。

著录项

  • 来源
    《Energy》 |2021年第1期|118957.1-118957.19|共19页
  • 作者单位

    Department of Mechanical and Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia Department of Mechanical Engineering Wasit University Wasit Iraq;

    Department of Mechanical and Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia;

    Faculty of Engineering Technology and Built Environment UCSI University Malaysia;

    Department of Mechanical and Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computational fluid dynamics; CNG-Air mixer; Dual-fuel systems;

    机译:计算流体动力学;CNG-AIR搅拌机;双燃料系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号