...
首页> 外文期刊>Energy >Study on the biomass-based integrated gasification combined cycle with negative CO_2 emissions under different temperatures and pressures
【24h】

Study on the biomass-based integrated gasification combined cycle with negative CO_2 emissions under different temperatures and pressures

机译:不同温度和压力下负CO_2排放的生物质基础综合气化联合循环研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To reduce the carbon emissions in power sector, a biomass-based integrated gasification combined cycle (BIGCC) with oxy-fuel combustion is proposed. The syngas generated from biomass gasification is burned under oxy-fuel atmosphere for power generation, and CO2 in the flue gas is captured by merely cooling. Thus, the negative CO2 emissions are realized considering the carbon neutral character of biomass. The effects of gasification temperature and pressure on syngas composition and system performance are investigated. The results show that rising pressure and temperature lead to lower H-2 and CO production, while CO2 and CH4 generation are enhanced with higher pressure and lower temperature. The system efficiency increases with the pressure rise, while it fluctuates with the temperature variation. The optimum temperature and pressure of gasification is 1000 degrees C and 3.5 MPa. The corresponding energy and exergy efficiency is 35.41% and 31.21%. The thermodynamic analysis is carried out for each subsystem. The energy loss and exergy destruction is 76.2% and 55.4% for gasifier and 21.8% and 31.3% for HRSG. Considering the unavoidable energy and exergy consumption in gasification, the system optimization can be concentrated on HRSG. The efficient power generation and significant carbon emissions reduction are achieved in the proposed system. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了减少电力界中的碳排放,提出了一种基于生物质的综合气化联合循环(BIGCC),具有氧燃料燃烧。从生物质气化产生的合成气在氧燃料气氛下燃烧,用于发电,并且仅通过冷却捕获烟气中的CO 2。因此,考虑到生物质的碳中性特征来实现负二氧化碳排放。研究了气化温度和压力对合成气组成和系统性能的影响。结果表明,上升的压力和温度导致H-2和CO生产,而CO 2和CH 4产生具有更高的压力和更低的温度。系统效率随着压力上升而增加,而它会波动与温度变化。气化的最佳温度和压力为1000℃和3.5MPa。相应的能量和高级效率为35.41%和31.21%。对每个子系统进行热力学分析。能量损失和漏洞破坏为气化炉76.2%和55.4%,HRSG的21.8%和31.3%。考虑到气化中不可避免的能量和高度消耗,系统优化可以集中在HRSG上。在所提出的系统中实现了高效的发电和显着的碳排放量。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2019年第jul15期|571 -580|共13页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Environm Sci & Engn Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomass gasification; Combined cycle; Negative carbon emissions; Energy; Exergy;

    机译:生物质气化;联合循环;负碳排放;能量;漏洞;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号