...
首页> 外文期刊>Energy >Study on the biomass-based integrated gasification combined cycle with negative CO_2 emissions under different temperatures and pressures
【24h】

Study on the biomass-based integrated gasification combined cycle with negative CO_2 emissions under different temperatures and pressures

机译:不同温度和压力下CO_2排放为负的基于生物质的整体气化联合循环研究

获取原文
获取原文并翻译 | 示例

摘要

To reduce the carbon emissions in power sector, a biomass-based integrated gasification combined cycle (BIGCC) with oxy-fuel combustion is proposed. The syngas generated from biomass gasification is burned under oxy-fuel atmosphere for power generation, and CO2 in the flue gas is captured by merely cooling. Thus, the negative CO2 emissions are realized considering the carbon neutral character of biomass. The effects of gasification temperature and pressure on syngas composition and system performance are investigated. The results show that rising pressure and temperature lead to lower H-2 and CO production, while CO2 and CH4 generation are enhanced with higher pressure and lower temperature. The system efficiency increases with the pressure rise, while it fluctuates with the temperature variation. The optimum temperature and pressure of gasification is 1000 degrees C and 3.5 MPa. The corresponding energy and exergy efficiency is 35.41% and 31.21%. The thermodynamic analysis is carried out for each subsystem. The energy loss and exergy destruction is 76.2% and 55.4% for gasifier and 21.8% and 31.3% for HRSG. Considering the unavoidable energy and exergy consumption in gasification, the system optimization can be concentrated on HRSG. The efficient power generation and significant carbon emissions reduction are achieved in the proposed system. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了减少电力部门的碳排放,提出了一种以含氧燃料燃烧的基于生物质的整体气化联合循环(BIGCC)。由生物质气化产生的合成气在氧气-燃料气氛下燃烧以发电,烟气中的CO2仅通过冷却即可捕获。因此,考虑到生物质的碳中和特性,实现了负CO2排放。研究了气化温度和压力对合成气组成和系统性能的影响。结果表明,压力和温度的升高导致H-2和CO的生成量降低,而高压和低温下的CO2和CH4生成量增加。系统效率随压力升高而增加,而随温度变化而波动。气化的最佳温度和压力为1000摄氏度和3.5 MPa。相应的能量和火用效率分别为35.41%和31.21%。对每个子系统进行热力学分析。气化炉的能量损失和火用破坏分别为76.2%和55.4%,HRSG的分别为21.8%和31.3%。考虑到气化过程中不可避免的能源消耗和火用热量,系统优化可以集中在HRSG上。在提出的系统中实现了有效的发电并显着减少了碳排放。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy 》 |2019年第15期| 571 -580| 共13页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomass gasification; Combined cycle; Negative carbon emissions; Energy; Exergy;

    机译:生物质气化;联合循环;负碳排放;能源;火能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号