首页> 外文期刊>Energy >Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor
【24h】

Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor

机译:纵向燃烧室中氢扩散火焰的熵和火焰传递函数分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, entropy generation and flame transfer function investigations are conducted on a hydrogen-burnt diffusion flame in a longitudinal combustor with acoustic waves present. For this, a time-domain 2D numerical model of a jet diffusion flame is developed to gain insights on its dynamic response to acoustic disturbances at either resonant or non-resonant frequencies. The model is validated first by comparing the numerical results such as turbulence intensities, pressure and velocity mode shape and flame shapes with the experimental data available in the literature. The model is then applied to evaluate the effects of the frequencies and amplitudes of the forcing acoustic waves, and the flame-holderozzle axial positions on entropy generation of both hydrogen- and propane-fueled flames. It is found that the entropy generation rate is sensitive to acoustic forcing frequencies, amplitudes and the nozzle axial positons. Furthermore, entropy produced from the heat conduction and the chemical reaction processes is shown to be dominant and secondary respectively. However, the mass diffusion is found to play a negligible role on the entropy generation. As the acoustic forcing frequency is set to 385 Hz near resonance, the total entropy generation rates are minimized, and the mass diffusion contribution is maximized with the flame being placed at velocity node locations in comparison with other flame-holding locations. Finally, flame transfer function (FTF) analysis is performed by using two different methods. It is shown that the flame responds strongly to low-frequency acoustic disturbances, acting like a band-pass filter. Increasing the acoustic intensity leads to the flame being more sensitive to the acoustic disturbances over more frequency bands.
机译:在这项工作中,对纵向燃烧器中存在声波的氢燃烧扩散火焰进行了熵产生和火焰传递函数研究。为此,开发了射流扩散火焰的时域二维数值模型,以了解其在共振或非共振频率下对声干扰的动态响应。首先通过将数值结果(例如湍流强度,压力和速度模式形状以及火焰形状)与文献中提供的实验数据进行比较来验证该模型。然后将该模型应用于评估强迫声波的频率和幅度以及火焰保持器/喷嘴轴向位置对氢燃料和丙烷燃料火焰的熵产生的影响。发现熵产生速率对声强迫频率,振幅和喷嘴轴向位置敏感。此外,由热传导和化学反应过程产生的熵分别显示为主要和次要的。然而,发现质量扩散对熵产生的作用可忽略不计。由于将声强迫频率设置为在共振附近为385 Hz,因此与其他火焰保持位置相比,将火焰置于速度节点位置时,总熵产生速率会最小化,并且质量扩散贡献会最大化。最后,使用两种不同的方法执行火焰传递函数(FTF)分析。结果表明,火焰对低频声干扰有强烈的响应,就像带通滤波器一样。声强度的增加导致火焰对更多频带上的声干扰更加敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号