首页> 外文期刊>Energy >Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty
【24h】

Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty

机译:基于增强学习的自适应功率夹点分析,用于考虑不确定性的独立混合储能系统的能量管理

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid energy storage systems (HESS) involve synergies between multiple energy storage technologies with complementary operating features aimed at enhancing the reliability of intermittent renewable energy sources (RES). Nevertheless, coordinating HESS through optimized energy management strategies (EMS) introduces complexity. The latter has been previously addressed by the authors through a systems-level graphical EMS via Power Pinch Analysis (PoPA). Although of proven efficiency, accounting for uncertainty with PoPA has been an issue, due to the assumption of a perfect day ahead (DA) generation and load profiles forecast. This paper proposes three adaptive PoPA-based EMS, aimed at negating load demand and RES stochastic variability. Each method has its own merits such as; reduced computational complexity and improved accuracy depending on the probability density function of uncertainty. The first and simplest adaptive scheme is based on a receding horizon model predictive control framework. The second employs a Kalman filter, whereas the third is based on a machine learning algorithm. The three methods are assessed on a real isolated HESS microgrid built in Greece. In validating the proposed methods against the DA PoPA, the proposed methods all performed better with regards to violation of the energy storage operating constraints and plummeting carbon emission footprint.
机译:混合储能系统(HESS)涉及多种储能技术之间的协同作用,其互补的运行特性旨在增强间歇性可再生能源(RES)的可靠性。然而,通过优化的能源管理策略(EMS)协调HESS会带来复杂性。作者先前已通过Power Pinch Analysis(PoPA)通过系统级图形化EMS解决了后者。尽管已证明行之有效,但由于假设了完美的提前一天(DA)生成和负载曲线预测,因此考虑到PoPA的不确定性一直是一个问题。本文提出了三种基于PoPA的自适应EMS,旨在消除负载需求和RES随机变异性。每种方法都有其优点,例如;根据不确定性的概率密度函数,可以降低计算复杂度并提高准确性。第一个也是最简单的自适应方案基于后退水平模型预测控制框架。第二种采用卡尔曼滤波器,而第三种则基于机器学习算法。这三种方法是在希腊建造的真正隔离的HESS微电网上评估的。在针对DA PoPA验证提出的方法时,提出的方法在违反储能操作限制和碳排放足迹骤减方面均表现更好。

著录项

  • 来源
    《Energy》 |2020年第15期|116622.1-116622.25|共25页
  • 作者

  • 作者单位

    School of Engineering Newcastle University Newcastle NE1 7RU United Kingdom;

    Chemical Process and Energy Resources Institute Centre for Research and Technology Hellas 57001 Thessaloniki Greece Department of Automation Engineering ATEI Thessaloniki Greece;

    Chemical Process and Energy Resources Institute Centre for Research and Technology Hellas 57001 Thessaloniki Greece;

    Department of Mechanical Engineering Aristotle University of Thessaloniki 54124 Thessaloniki Greece;

    Aston University School of Engineering and Applied Science Birmingham United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hybrid energy storage systems; Energy management strategies; Model predictive control; Kalman filter; Reinforcement learning;

    机译:混合储能系统;能源管理策略;模型预测控制;卡尔曼滤波器强化学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号