...
首页> 外文期刊>Energy >Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers
【24h】

Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers

机译:全锥压力旋流雾化器喷雾特性的数值和实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Numerical and experimental studies have been performed to investigate the macroscopic spray structure and spray characteristics of sprays generated by a full-cone pressure swirl atomizer. The simulation employs Eulerian-Lagrangian scheme to account for the multiphase flow and the linearized instability sheet atomization model to predict film formation, sheet breakup and atomization. Reynolds-Averaged Navier-Stokes (RANS) equations are solved for turbulent gas flow. The model predictions show great consistency with the experimental measurements of the spatial variation of the droplet size and velocity obtained from Phase Doppler Particle Analyser (PDPA). The robustness of this model makes it useful to predict the structures and characteristics of co-flow sprays produced by pressure-swirl atomizers. This particular spray is quite important in spray cooling application but is not extensively studied. The study reveals that the entrainment effect and intense central-region atomization cause small droplets to concentrate on the spray axis and large droplets to dominate in the peripheral region of the spray. This finding is consistent with the observation that turbulence kinetic energy of air is maximum near the nozzle exit, where atomization is intense and momentum exchange is strong, and gradually decreases in both radial and axial directions. Moreover, the drops inside the full cone are relatively small, and evaporate more easily than their large counterparts in the peripheral region, hence removing substantial sensible heat from surrounding air and creating low-temperature region in the central of the spray. (C) 2018 Elsevier Ltd. All rights reserved.
机译:已经进行了数值和实验研究,以研究由全锥压力旋流雾化器产生的喷雾的宏观喷雾结构和喷雾特性。该模拟采用欧拉-拉格朗日方案来解释多相流动,并采用线性不稳定性薄板雾化模型来预测膜形成,薄板破裂和雾化。雷诺平均Navier-Stokes(RANS)方程用于求解湍流。该模型预测与从相位多普勒粒子分析仪(PDPA)获得的液滴尺寸和速度的空间变化的实验测量结果具有很好的一致性。该模型的鲁棒性有助于预测压力旋流式雾化器产生的同流喷雾的结构和特性。这种特殊的喷雾剂在喷雾冷却应用中非常重要,但尚未得到广泛研究。研究表明,夹带效应和强烈的中心区域雾化导致小液滴集中在喷雾轴上,大液滴在喷雾的外围区域占主导地位。这一发现与以下观察结果一致:在喷嘴出口附近,空气的湍流动能最大,在喷嘴出口处,雾化强烈并且动量交换很强,并且在径向和轴向上都逐渐减小。此外,全锥内的液滴相对较小,并且比其周边区域中的较大液滴更容易蒸发,因此从周围的空气中去除了大量的显热,并在喷雾的中央形成了低温区域。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号