首页> 外文期刊>Energy & fuels >Prediction of the Standard Atmosphere Profiles of Temperature, Pressure, and Density with Height for the Lower Atmosphere by Solution of the (S-S) Integral Equations of Transfer and Evaluation of the Potential for Profile Perturbation by Combustion Emiss
【24h】

Prediction of the Standard Atmosphere Profiles of Temperature, Pressure, and Density with Height for the Lower Atmosphere by Solution of the (S-S) Integral Equations of Transfer and Evaluation of the Potential for Profile Perturbation by Combustion Emiss

机译:通过(S-S)积分传递方程的求解预测低层大气的温度,压力和高密度的标准大气廓线,并通过燃烧排放评估廓线扰动的潜力

获取原文
获取原文并翻译 | 示例
       

摘要

This analytical solution, believed to be original here, to the 1D formulation of the (1905-1906) integral (S—S) Equations of Transfer, governing radiation through the atmosphere, is developed for future evaluation of the potential impact of combustion emissions on climate change. The solution predicts, in agreement with the Standard Atmosphere experimental data, a linear decline of the fourth power of the temperature, T~4, with pressure, P, and, at a first approximation, a linear decline of T with altitude, h, up to the tropopause at about 10 km (the lower atmosphere). From these two results, with transformation using the Equation of State, the variations of pressure, P, and density, ρ, with altitude, h, are also then obtained, with the predictions again, separately, in substantial agreement with the Standard Atmosphere data up to 30 km altitude (1% density). The analytical procedure adopts the standard assumptions commonly used for numerical solutions of steady state, one dimensionality, constant flux directional parameter (μ), and a gray-body equivalent average for the effective radiation absorption coefficient, k, for the mixed thermal radiation-active gases at an effective (joint-mixture) concentration, p. Using these assumptions, analytical closure and validation of the equation solution is essentially complete. Numerical closure is not yet complete, with only one parameter at this time not independently calculated but not required numerically for validation of analytical closure. This is the value of the group-pair (kp)_o representing the ground-level value of (kp), the product of the effective absorption coefficient and concentration of the mixed gases, written as a single parameter but decomposable into constituent gases and/or gas bands. Reduction of the experimental value of (kp)_o to values of k for a comparison with relevant band data for water and CO_2 shows numerical magnitudes substantially matching the longest wavelength bands for each of the two gases. Allowing also for the maximum absorption percentages, α°, of these two bands for the two gases, respectively, 39% for water and 8.5% for CO_2, these values then support the dominance of water (as gas and not vapor) at about 80%, compared with CO_2 at about 20%, as the primary absorbing/ emitting ("greenhouse") gas in the atmosphere. These results provide a platform for future numerical determination of the influence on the T, P, and ρ profiles of perturbations in the gas concentrations of the two primary species, carbon dioxide and water, and it provides, specifically, the analytical basis needed for future analysis of the impact potential from increases in atmospheric carbon dioxide concentration, because of fossil-fuel combustion, in relation to climate change.
机译:这种分析解决方案据信是对(1905-1906)积分(SS)传递方程的一维公式化的一种分析解决方案,用于控制通过大气的辐射,用于将来评估燃烧排放物对大气的潜在影响。气候变化。与标准大气实验数据一致,该解决方案可以预测温度四次方T〜4随压力P的线性下降,并且一阶近似时,T随海拔高度h的线性下降,直到对流层顶约10公里(低层大气)。从这两个结果中,通过使用状态方程进行转换,还可以获得压力P和密度ρ随高度h的变化,并再次分别与标准大气数据基本一致地进行了预测。最高30 km的高度(密度为1%)。该分析程序采用通常用于稳态数值解,一维,恒定通量方向参数(μ)以及混合热辐射活性的有效辐射吸收系数k的灰体等效平均值的标准假设。有效(混合气体)浓度下的气体,p。使用这些假设,方程式解的解析闭合和验证就基本完成了。数值封闭尚不完整,目前只有一个参数尚未独立计算,但对于验证解析封闭而言并不需要数值。这是代表(kp)的地平面值(kp)_o的组对(kp)_o的值,它是有效吸收系数和混合气体浓度的乘积,记为单个参数,但可分解为组成气体和/或瓦斯乐队。将(kp)_o的实验值减小为k的值,以便与水和CO_2的相关谱带数据进行比较,显示出与两种气体中每种气体的最长波长谱带基本匹配的数值幅度。还考虑到两种气体的这两个谱带的最大吸收百分比α°,分别为水的39%和CO_2的8.5%,然后这些值支持了水(以气体而不是蒸汽的形式)的占主导地位,约为80与大气中的主要吸收/排放(“温室”)气体相比,CO 2约为20%时,所占百分比为%。这些结果为将来数值确定扰动的T,P和ρ分布图对两种主要物质(二氧化碳和水)的气体浓度的影响提供了平台,并且它特别提供了未来所需的分析基础。分析了化石燃料燃烧引起的大气二氧化碳浓度升高与气候变化相关的潜在影响。

著录项

  • 来源
    《Energy & fuels》 |2006年第3期|p.1057-1067|共11页
  • 作者

    Robert H. Essenhigh;

  • 作者单位

    E. G. Bailey Professor of Energy Conversion, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TK-;
  • 关键词

  • 入库时间 2022-08-18 00:43:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号