首页> 外文期刊>Energy & fuels >Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control
【24h】

Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control

机译:基于DRGEP和PCA方法的HCCI发动机碳氢化合物化学自动还原误差控制。

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical kinetics of hydrocarbon fuels determines the combustion characteristics and pollutant emissions of homogeneous charge compression ignition (HCCI) engines. Including comprehensive chemical mechanisms in HCCI engine models provides accurate predictive results that can be used to improve engine designs. However, a large number of simulations are usually required to optimize an HCCI engine, and the use of comprehensive chemical mechanisms is prohibitive. Furthermore, an increased demand for surrogate fuels that better represent real fuels has resulted in further increases in the size of chemical mechanisms as the carbon number of surrogate fuel species and the number of fuel components considered increases. Consequently, reduced mechanisms of smaller sizes, which are able to represent their corresponding comprehensive mechanisms over a wide range of conditions are necessary. This paper presents an approach that fully automates the process of reducing comprehensive chemical mechanisms of fuels for HCCI engines. The approach is based on the directed relation graph with error propagation (DRGEP) and principal component analysis (PCA) methods. In the first stage, the DRGEP method is used to efficiently remove redundant species. This is followed by the use of the PCA method to further remove insignificant reactions and species. During the entire process, the performance of the reduced mechanism is monitored to ensure that the generated mechanism satisfies user-specified error tolerances. In the present study three comprehensive mechanisms that include n-heptane, iso-octane, and methyl decanoate (MD) were investigated. The proposed approach successfully reduced the comprehensive mechanisms of n-heptane (561 species and 2539 reactions), iso-octane (857 species and 3606 reactions), and MD (2878 species and 8555 reactions) to reduced mechanisms with sizes of 140 species and 491 reactions, 195 species and 647 reactions, and 435 species and 1098 reactions, respectively, while maintaining small errors compared to the full mechanisms.
机译:碳氢化合物燃料的化学动力学决定了均质压燃式(HCCI)发动机的燃烧特性和污染物排放。 HCCI发动机模型中包括全面的化学机制,可提供可用于改进发动机设计的准确预测结果。但是,通常需要进行大量仿真来优化HCCI发动机,并且禁止使用全面的化学机理。此外,随着对替代燃料种类的碳数和所考虑的燃料成分的数量的增加,对更好地代表真实燃料的替代燃料的需求增加导致化学机理的大小进一步增加。因此,需要较小尺寸的减小的机构,该机构能够在广泛的条件下代表其相应的综合机构。本文提出了一种完全自动化的方法,该方法可以降低HCCI发动机燃料的综合化学机理。该方法基于具有错误传播(DRGEP)和主成分分析(PCA)方法的有向关系图。在第一阶段,DRGEP方法用于有效去除多余的物种。随后使用PCA方法进一步去除无关紧要的反应和物质。在整个过程中,将监视简化机制的性能,以确保生成的机制满足用户指定的错误容限。在本研究中,研究了包括正庚烷,异辛烷和癸酸甲酯(MD)在内的三种综合机理。所提出的方法成功地将正庚烷(561个物种和2539个反应),异辛烷(857个物种和3606个反应)和MD(2878个物种和8555个反应)的综合机理还原为大小分别为140种和491个的还原机理。与完整机理相比,在保持较小误差的同时,分别进行了195种和647种反应,435种和1098种反应。

著录项

  • 来源
    《Energy & fuels》 |2010年第maraaapr期|p.1646-1654|共9页
  • 作者单位

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

    rnEngine Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706;

    rnEngine Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706;

    rnEngine Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号