首页> 外文期刊>Energy & fuels >CO2 Storage and Flow Capacity Measurements on Idealized Shales from Dynamic Breakthrough Experiments
【24h】

CO2 Storage and Flow Capacity Measurements on Idealized Shales from Dynamic Breakthrough Experiments

机译:通过动态突破实验测量理想页岩中的二氧化碳储存量和流量

获取原文
获取原文并翻译 | 示例
       

摘要

Dynamic column breakthrough (DCB) measurements were carried out on idealized shale samples for the first time, based,on a custom-designed system. To better understand the contribution of different shale minerals on flow and storativity, measurements were carried out on composition-controlled shales having known weight percentages of total organic carbon (TOC) and illite. CO2 was assessed for its potential for sequestration, as well as its applicability as a fracturing fluid for enhanced gas recovery in shale formations. Experimental results reveal an increase in permeability and CO2 adsorption with either increasing TOC or illite content. This is attributed to the complex porous structure of kerogen, as well as the interlayering characteristics of clay minerals, resulting in large surface area and pore volume ratios. Permeant permeability reduction was noted with CO2 due to adsorption-induced swelling that is proportional to the amount of gas adsorbed. Helium permeability post CO2 adsorption decreased by 63% and 31.5% for the 46.3% and 25.4% illite series, respectively. In fact, DCB experiments reveal the potential for CO2 storage in shale formations With adsorption capacities exceeding that of CH4 by 4-12 times, depending, on the content of TOC and illite. Through a series of low-pressure gas adsorption experiments, it was found that each weight percent increase in TOC has a larger influence on the pore volume and surface area, compared to each weight percent increase in illite content. An similar to 3.5 wt % increase in. TOC leads to an similar to 0.005 cm(3)/g increase in pore volume, whereas it takes a similar to 20 wt % increase in illite to achieve a 0.003 cm(3)/g increase. The TOC series pore volume increases by similar to 1.4 x 10(-3) cm(3)/g for each weight percent increase in TOC, whereas the illite series pore volume only increases by similar to 0.4 x 10(-3) cm(3)/g for each weight percent increase in illite content. The coupled results clearly establish the comparative role of the organic versus inorganic adsorbing components of gas shales while overcoming the material heterogeneity through the investigation of "idealized" compositions.
机译:基于定制设计的系统,首次对理想的页岩样品进行了动态色谱柱穿透(DCB)测量。为了更好地理解不同页岩矿物对流量和储能度的贡献,对总有机碳(TOC)和伊利石总重量百分比已知的成分控制的页岩进行了测量。评估了CO2的螯合潜力以及其作为压裂液的适用性,以提高页岩地层中的气体采收率。实验结果表明,随着TOC或伊利石含量的增加,渗透率和CO2吸附也增加。这归因于干酪根的复杂的多孔结构,以及粘土矿物的夹层特性,从而导致较大的表面积和孔体积比。由于吸附引起的溶胀与吸收的气体量成正比,因此二氧化碳引起的渗透率降低。伊利石系列的46.3%和25.4%的CO2吸附后的氦渗透率分别降低了63%和31.5%。实际上,DCB实验揭示了页岩岩层中CO2储存的潜力,其吸附能力比CH4的吸附能力高4-12倍,这取决于TOC和伊利石的含量。通过一系列低压气体吸附实验,发现与伊利石含量每增加一个重量百分比相比,TOC每增加一个重量百分比对孔体积和表面积的影响更大。近似3.5%的增加。TOC导致孔隙体积增加大约0.005 cm(3)/ g,而伊利石增加20%的孔隙率才能达到0.003 cm(3)/ g的增加。对于TOC的每重量百分数增加,TOC系列的孔容增加约1.4 x 10(-3)cm(3)/ g,而伊利石系列的孔容仅增加约0.4 x 10(-3)cm( 3)/ g伊利石含量每增加1重量%。结合的结果清楚地证明了页岩中有机和无机吸附组分的比较作用,同时通过研究“理想化”的成分克服了材料的不均匀性。

著录项

  • 来源
    《Energy & fuels》 |2017年第2期|1193-1207|共15页
  • 作者单位

    Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA;

    Indian Inst Technol, Dept Earth Sci, Mumbai 400076, Maharashtra, India;

    Dow Corning Corp, Midland, MI 48686 USA;

    Colorado Sch Mines, Chem & Biol Engn Dept, Golden, CO 80401 USA;

    Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA|Stanford Univ, Dept Energy Resources Engn, 367 Panama St,Green Earth Sci 074, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号