首页> 外文期刊>Energy & fuels >Impact of Capillary Pressure and Nanopore Confinement on Phase Behaviors of Shale Gas and Oil
【24h】

Impact of Capillary Pressure and Nanopore Confinement on Phase Behaviors of Shale Gas and Oil

机译:页岩气和油的毛细管压力和纳米孔约束对相行为的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a general framework of theoretical models and algorithm is developed to predict phase envelopes (saturation points) and quality lines of shale gas and oil in nanopores. The equation of state (EOS) and the modified Young-Laplace equation are used to take into consideration the effect of phase behavior and capillary pressure on phase envelopes, respectively. The Zuo and Stenby parachor model is applied to determine interfacial tensions between the vapor and liquid phases. In addition, a critical property shift of pure components is utilized to account for the impact of nanopore confinement on phase envelopes. The algorithm has proven to be robust for generating phase envelopes including critical points, cricondentherms (maximum temperatures), and cricondenbars (maximum pressures) for a variety of fluids at different compositions, vapor mole fractions (quality lines), and pore sizes. The models and algorithm are then used to explain the recently measured data of normal boiling point or bubble point temperatures for pure n-heptane in type I kerogen, binary mixtures of n-pentane + n-hexane and n-pentane + n-heptane, and a ternary mixture of n-pentane + n-hexane + n-heptane in the nanofluidic devices. For pure n-heptane in type I kerogen, with a presumption of nanopores being completely wetted by the liquid phase, the models agree well with the experimental data within a reasonable range of type I kerogen nanopore distributions in the presence of capillary pressure effect only as well as both capillary pressure and nanopore confinement effects. However, for the binary and ternary mixtures in the nanofluidic devices, the complete wettability assumption seems no longer valid. The wetting fluid wall interaction parameter (2) is then adjusted to match the experimental data at the nanopore radius of 5 nm. The adjusted parameters are lambda = 142.2 similar to 167.5 and lambda = -14.0 for the three tested binary and ternary mixtures in the presence of capillary pressure effect only as well as both capillary pressure and nanopore confinement effects, respectively. The models provide not only good predictions at other radii but also a correct trend for the mixtures in the presence of capillary pressure effect only but a wrong trend against the experimental data in the presence of both capillary pressure and nanopore confinement effects. In addition, in the presence of both capillary pressure and confinement effects, a decrease in bubble and dew point pressures with decreasing pore radius is observed for shale gas and oil. For gas condensate mixtures, field production data show that produced liquid and gas ratios decrease even at reservoir pressures above bulk retrograde dew points. It is obvious that the model with critical property shift contradicts the field observation. More research activities in this area are required. Although in the presence of capillary pressure effect only, a decrease in bubble point pressures is estimated for shale oil, an increase in dew point pressures is predicted for shale gas with decreasing pore radius.
机译:本文建立了理论模型和算法的通用框架,以预测纳米孔中页岩气和油的相包络(饱和点)和质量线。状态方程(EOS)和改进的Young-Laplace方程分别用于考虑相行为和毛细管压力对相包络的影响。使用Zuo和Stenby降落伞模型确定气相和液相之间的界面张力。另外,利用纯组分的关键性质变化来解释纳米孔限制对相包膜的影响。该算法已被证明对于生成包括临界点,临界温度(最高温度)和临界温度(最高压力)的相包络是稳健的,适用于不同组成,蒸气摩尔分数(质量线)和孔径的各种流体。然后使用模型和算法来解释最近测得的I型干酪根中正庚烷,正戊烷+正己烷和正戊烷+正庚烷的二元混合物的正常沸点或沸点温度的最新数据,纳米流体装置中正戊烷+正己烷+正庚烷的三元混合物。对于I型干酪根中的纯正庚烷,假定纳米孔被液相完全润湿,在毛细管压力效应存在的情况下,模型在合理的I型干酪根纳米孔分布范围内与实验数据吻合良好。以及毛细管压力和纳米孔限制作用。然而,对于纳米流体装置中的二元和三元混合物,完全的润湿性假设似乎不再成立。然后调节润湿流体壁相互作用参数(2)以匹配5nm纳米孔半径处的实验数据。对于三种测试的二元和三元混合物,在仅存在毛细压力效应以及毛细压力和纳米孔限制效应的情况下,调整后的参数分别为167.5的lambda = 142.2和lambda = -14.0。该模型不仅提供了在其他半径处的良好预测,而且还提供了仅在存在毛细管压力效应的情况下混合物的正确趋势,但在存在毛细管压力和纳米孔限制效应的情况下,针对实验数据的错误趋势均不正确。另外,在存在毛细压力和限制作用的情况下,对于页岩气和油,观察到气泡和露点压力随孔隙半径的减小而减小。对于气体凝析油混合物,现场生产数据显示,即使在高于大体积逆行露点的储层压力下,产出的液气比也会降低。显然,具有临界特性偏移的模型与现场观察相矛盾。需要在这一领域进行更多的研究活动。尽管仅在存在毛管压力效应的情况下,但估计页岩油的泡点压力会降低,而对于页岩气的孔隙半径却会减小,露点压力会增加。

著录项

  • 来源
    《Energy & fuels》 |2018年第4期|4705-4714|共10页
  • 作者单位

    FMG Inc, Edmonton, AB T6N 1M9, Canada;

    China Univ Petr, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    China Univ Petr, 18 Fuxue Rd, Beijing 102249, Peoples R China;

    Schlumberger, Houston, TX 77054 USA;

    Schlumberger, Houston, TX 77054 USA;

    Schlumberger, Houston, TX 77054 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号