首页> 外文期刊>Energy & fuels >State-of-the-Art Research and Applications of Carbon Foam Composite Materials as Electrodes for High-Capacity Lithium Batteries
【24h】

State-of-the-Art Research and Applications of Carbon Foam Composite Materials as Electrodes for High-Capacity Lithium Batteries

机译:碳泡沫复合材料作为高容量锂电池电极的最先进的研究和应用

获取原文
获取原文并翻译 | 示例
           

摘要

The development of advanced electrode materials for next-generation rechargeable lithium batteries with high specific capacity and energy density and long life is promising to meet the demand for electric vehicles and portable devices. This paper provides a comprehensive review of the recent progress on foam-like carbon composite materials as high-performance electrode materials, covering the methodology of synthesizing carbon foams (CFs) and graphene foams (GFs), the applications of CF- and GF-based composite materials, and their electrochemical performance for the next-generation Li batteries. The CFs from different precursors (coals, polymers, and biomass) and proper preparations are compared in terms of their synthesis methods, properties, structural characteristics, and performance. Recently, the research of CF-based composite materials are mainly focused on Li-ion batteries (LIBs) and Li-S batteries (LSBs). The synergetic effects between carbon frameworks and the active materials are overviewed to illustrate the merits that CFs provide to the integrated electrode materials. In the CF- and GF-based composite materials as the anode materials for LIBs, the carbon matrix with high electrical conductivity can provide the hierarchical pore structures, which allow for better transport of Li ions and storage of electrons and accommodate the expansion of the active components, while the composite materials allow for the facilitation of the high theoretical capacity of the active materials that are supported on the three-dimensional interconnected carbon matrix. The CF- and GF-based composite materials can also be applied as cathode materials for LSBs to address the limitations of isolated sulfur nature and "shuttle effect". The mesoporous foam structure could increase the amount of sulfur loading and absorb water-soluble polysulfide during charging and discharging processes. In the meantime, the three-dimensional CFs and GFs could promise the possibility of self-supporting electrode materials without adding binders. Through the extensive literature review, some technical challenges of CF and GF composite materials for lithium-based batteries are identified and future research needs are addressed. In particular, CF/GF composite materials from coal, coal-based precursors, and biomass and their applications in high-performance batteries are worthy of extensive future research. The significant progress has been achieved on the development of CF- and GF-based composites for lithium battery applications, including the synthesis techniques, the structure control of the composite materials, and their electrochemical performance as electrodes for different types of Li batteries, i.e., LIBs, LSBs, Li-air, and Li metal batteries. The design for hierarchical architectures of these foam-based composites might be the critical factor to preserve the high structural stability of the integrated electrode composites and their stable cycling capability and excellent rate performance.
机译:具有高特定容量和能量密度和长寿命的下一代可充电锂电池的先进电极材料的开发是有希望满足电动汽车和便携式设备的需求。本文综述了对泡沫状碳复合材料作为高性能电极材料的最近进展的全面审查,涵盖了合成碳泡沫(CFS)和石墨烯泡沫(GFS)的方法,基于CF和GF的应用复合材料,及其对下一代LI电池的电化学性能。根据其合成方法,性质,结构特征和性能,比较来自不同前体(煤,聚合物和生物质)和适当的制剂的CFS。最近,CF基复合材料的研究主要集中在锂离子电池(LIBS)和Li-S电池(LSB)上。概述碳框架和活性材料之间的协同作用,以说明CFS提供给集成电极材料的优点。在基于CF和GF的复合材料中作为LIBS的阳极材料,具有高导电率的碳基质可以提供分级孔结构,其允许更好地运输Li离子和电子的储存并容纳了活性的膨胀组件,而复合材料允许促进在三维相互连接的碳基质上负载的高理论能力。基于CF和GF的复合材料也可以作为LSB的阴极材料应用,以解决孤立的硫特性和“梭效应”的局限性。中孔泡沫结构可以在充电和放电过程中增加硫载荷量并吸收水溶性多硫化物。同时,三维CFS和GFS可以承诺在不添加粘合剂的情况下提供自支撑电极材料的可能性。通过广泛的文献综述,确定了CF和GF复合材料的一些技术挑战,确定了锂基电池的综合材料,并解决了未来的研究需求。特别是,来自煤,煤的前体和生物量的CF / GF复合材料及其在高性能电池中的应用是值得广泛的研究。对锂电池应用的CF和GF基复合材料的开发实现了显着进展,包括合成技术,复合材料的结构控制,以及它们作为不同类型LI电池的电极的电化学性能,即, LIBS,LSB,LI-AIR和LI金属电池。这些泡沫基复合材料的分层体系结构的设计可能是保持集成电极复合材料的高结构稳定性的关键因素及其稳定的循环能力和优异的速率性能。

著录项

  • 来源
    《Energy & fuels》 |2020年第7期|7935-7954|共20页
  • 作者单位

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia;

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia|Univ Sci & Technol Liaoning Sch Chem Engn Key Lab Adv Coal & Coking Technol Liaoning Prov Anshan 114051 Liaoning Peoples R China;

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia;

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia;

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia;

    Univ Newcastle Chem Engn Callaghan NSW 2308 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号