首页> 外文期刊>Energy & fuels >Void Space Control in Porous Carbon for High-Density Supercapacitive Charge Storage
【24h】

Void Space Control in Porous Carbon for High-Density Supercapacitive Charge Storage

机译:多孔碳中的空隙空间控制,用于高密度超级电荷储存

获取原文
获取原文并翻译 | 示例
       

摘要

High-density charge (energy) storage under supercapacitive mode requires an electrode that would deliver larger space for charge accumulation and offer a larger electrochemical potential difference at an electrode-electrolyte interface. Porous carbon has been a preferred electrode for commercial supercapacitors; however, its charge storability is much lower than that of state-of-the-art charge-storage devices such as lithium-ion batteries. We show that one of the primary limiting factors is the voids in porous carbon, which do not contribute to the capacitance because their sizes are much larger than the size of the solvated/unsolvated ions in the electrolyte. We partially activate these voids by filling them with a flower-shaped 3D hierarchical pseudocapacitive material (MnCo2O4) by assuming that flower-shaped fillers would provide an additional easily accessible surface for charge adsorption. Less than 10 wt % MnCo2O4 in the porous carbon from palm kernel shells through simple wet impregnation results in a five-fold increase in the charge storability. Laboratory prototypes of symmetric supercapacitors are fabricated using the MnCo2O4-filled carbon electrodes, which show five times higher specific energy than pure carbon and are cycled over 5000 times with 95% capacitance retention. The present strategy of activating the voids by hierarchical 3D nanostructures could be applied to build high-performance energy-storage devices.
机译:超级电容模式下的高密度电荷(能量)储存需要一个电极,该电极将提供更大的电荷积聚空间,并在电极电解质界面处提供更大的电化学电位差。多孔碳是商业超级电容器的优选电极;然而,其电荷储存性远低于最先进的电荷 - 储存装置,例如锂离子电池。我们表明,其中一个主要限制因子是多孔碳中的空隙,这对电容没有贡献,因为它们的尺寸远大于电解质中溶剂化/未溶剂离子的尺寸。通过假设花形填料将提供用于电荷吸附的额外易于可接近的表面,通过用花形3D层次伪容器材料(MNCO2O4)填充它们来部分激活这些空隙。通过简单的湿浸渍来自棕榈仁壳的多孔碳中少于10wt%的MnCo2O4导致电荷储存性增加五倍。使用MNCO2O4填充的碳电极制造了对称超级电容器的实验室原型,该碳电极显示出比纯碳高的五倍,并且循环超过5000次,随着> 95%的电容保留。可以应用通过分层3D纳米结构激活空隙的目前的策略来构建高性能的能量存储装置。

著录项

  • 来源
    《Energy & fuels》 |2020年第4期|5072-5083|共12页
  • 作者单位

    Univ Malaysia Pahang Nanostruct Renewable Energy Mat Lab Fac Ind Sci & Technol Kuantan 26300 Malaysia;

    Univ Malaysia Pahang Nanostruct Renewable Energy Mat Lab Fac Ind Sci & Technol Kuantan 26300 Malaysia;

    Univ Malaysia Pahang Nanostruct Renewable Energy Mat Lab Fac Ind Sci & Technol Kuantan 26300 Malaysia;

    CETEES Varennes PQ J3X 1S1 Canada;

    Natl Univ Singapore Dept Mat Sci & Engn Singapore 117576 Singapore;

    Ming Chi Univ Technol Cry Res Ctr Green Energy New Taipei 24301 Taiwan;

    Noritake Co Ltd R&D Ctr Miyoshi Aichi 4700293 Japan;

    Univ Malaysia Pahang Nanostruct Renewable Energy Mat Lab Fac Ind Sci & Technol Kuantan 26300 Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:24:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号