...
首页> 外文期刊>Energy & fuels >Comprehensive Modeling of Sorption-Enhanced Steam Reforming of Coke Oven Gas in a Fluidized Bed Membrane Reactor
【24h】

Comprehensive Modeling of Sorption-Enhanced Steam Reforming of Coke Oven Gas in a Fluidized Bed Membrane Reactor

机译:流化床膜反应器中焦炉气体吸附增强蒸汽重整的综合建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Integration of membrane hydrogen separation and carbon dioxide capture with fuel steam reforming efficiently promoted hydrogen production and feedstock conversion. In this study, catalytic steam reforming of coke oven gas in a sorptionenhanced fluidized bed membrane reactor (MA-SE-SRCOG) was simulated using a reactive three-fluid model under the Euler framework. The numerical studies provided insights into details about interactions of multiscale subprocesses, including hydrogen permeation, carbon dioxide adsorption, catalytic reforming, and multiphase flow dynamics, during MA-SE-SRCOG. Concentration polarization caused by hydrogen separation was also examined. Meanwhile, impacts of several operating parameters, such as reaction pressure, steam concentration, membrane position, and reactor scale, on the performance of MA-SE-SRCOG were evaluated in terms of CH4 conversion, CO selectivity, hydrogen recovery factor, and CO2 fix factor. The simulation results demonstrated that membrane hydrogen separation and carbon dioxide adsorption promoted reforming kinetics and reactant conversions in the fast reaction zone, and also extended the reactive zone, thus efficiently improving the overall reforming efficiencies. Fast CO2 adsorption kinetics showed more profound enhancements on reducing CO selectivity compared to membrane separation, which instead had greater potential to facilitate high CH4 conversion when membrane effectiveness (a parameter representing impacts of membrane area, layer thickness and composite on permeation rates) was sufficiently large, particularly at high operation pressures. With membrane effectiveness increasing from 1 to 5, a CH4 conversion of 91.3% was achieved by MA-SE-SRCOG at 0.33 MPa and 560 degrees C, while the H-2 permeation flux was augmented from 0.077 mol/(m(2).s) to 0.192 mol/(m(2).s). However, the increase of membrane effectiveness would cause more serious H-2 concentration polarization in FBMR, which inhibited the effective H-2 separation rates, so membrane effectiveness 10 has been observed to not remarkably benefit CH4 conversion and H-2 production further. High S/C (6) enhanced the occurrence of larger bubbles, and decreased the driving force (hydrogen partial pressure) for hydrogen permeation, both of which degraded the reforming performances and reduced yield of high purity H-2. The more closely membrane units were installed to the fast reaction zone, the larger the enhancements of membrane expected to exert on COG-steam reforming reactions. With the given dimensions of the membrane tube, the decrease of reactor diameter helped to decrease concentration polarization, so higher CH4 conversion and H-2 separation factors were achieved.
机译:膜氢分离与二氧化碳捕获与燃料蒸汽重整的整合有效促进氢气生产和原料转化。在该研究中,使用欧拉框架下的反应性三种流体模型模拟冰川型流化床膜反应器(MA-SE-SRCOG)中焦炭烘箱气体的催化蒸汽重整。该数值研究提供了关于Ma-Se-Srcog期间的多尺度亚过程的相互作用,包括氢渗透,二氧化碳吸附,催化重整和多相流动动力学的细节的见解。还检查了由氢分离引起的浓度偏振。同时,根据CH4转化,CO选择性,氢恢复因子和CO2固定,评估了几种操作参数的影响,例如反应压力,蒸汽浓度,膜位置和反应堆量表,对MA-SE-SRCOG的性能进行评估因素。仿真结果表明,膜氢气分离和二氧化碳吸附促进了快速反应区中的动力学和反应物转化,并延伸了反应区,从而有效地提高了整体重整效率。与膜分离相比,快速CO 2吸附动力学表现出更深入的增强,这与膜分离相比,在膜分离中,当膜有效性(代表膜面积的影响的参数,渗透率上的复合材料的参数)时,促进了高CH4转化的潜力。足够大,特别是在高操作压力下。膜效应从1〜5增加,通过MA-SE-Srcog在0.33MPa和560℃下实现91.3%的CH 4转化,而H-2渗透通量增加0.077 mol /(m(2)。 s)至0.192 mol /(m(2)。)。然而,膜效应的增加将导致FBMR中的更严重的H-2浓度偏振,其抑制有效的H-2分离率,因此已经观察到膜效应> 10未显着利用CH 4转化和H-2进一步产生。高S / C(> 6)增强了较大气泡的发生,并且降低了用于氢渗透的驱动力(氢气分压),这两者都降低了重整性能并降低了高纯度H-2的产率。膜单元越紧密地安装在快速反应区上,膜的增强越大,膜预期施加在嵌齿蒸汽重整反应中。对于膜管的给定尺寸,反应器直径的降低有助于降低浓度极化,因此实现了较高的CH 4转化率和H-2分离因子。

著录项

  • 来源
    《Energy & fuels》 |2020年第3期|3065-3086|共22页
  • 作者单位

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China|China Univ Min & Technol Jiansu Prov Engn Lab High Efficient Energy Storag Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Elect Power Engn Xuzhou 221116 Jiangsu Peoples R China;

    Huazhong Univ Sci & Technol State Key Lab Coal Combust Wuhan 430074 Hubei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号