...
首页> 外文期刊>Energy & fuels >Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure
【24h】

Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure

机译:用离子交换,表面络合和分离压力解释页岩的吸水率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multi-stage hydraulic fracturing is a commonly used method to maximize production from shale gas reservoirs. However, the recovery of flowback water after hydraulic fracturing is relatively low, which gives rise to technical and environmental concerns. Although it is widely accepted that the water uptake is due to physicochemical fluid-shale interactions caused by the capillary forces, much of the studies up to now are just descriptive in nature and little attention has been paid to quantitatively characterize the fluid-shale interactions and, thus, surface forces from a geochemical perspective. In this study, we performed geochemical modeling to explain the results of spontaneous imbibition experiments by published work. We calculated the surface potential of organic matter, quartz, and calcite in the presence of 0.1-20 wt % NaCl. Moreover, we predicted the local pH using PHREEQC with consideration of ion exchange and mineral dissolution. We also computed the disjoining pressure under constant charge conditions. Results show that a low salinity drives the surface potential of organic matter and inorganic minerals to strongly negative at in situ pH. The disjoining pressure isotherm shows that air-brine-organic matter and air-brine-calcite systems give positive disjoining pressure regardless of salinity, implying a water-wet system. Moreover, a low salinity shifts the disjoining pressure to be more positive for organic matter, suggesting a wettability alteration process. However, the change of disjoining pressure on the calcite surface is negligible as a function of salinity. Our results confirm that capillary forces at least partially contribute to the water uptake, and the presence of organic matter likely further facilitates the water uptake as a result of wettability alteration. This explains in part why a low salinity causes shale expansion and microfracture generation in organic-rich reservoirs.
机译:多级水力压裂是使页岩气储层产量最大化的常用方法。然而,在水力压裂之后,返排水的回收率相对较低,这引起了技术和环境方面的关注。尽管人们普遍认为吸水是由于毛细作用力引起的理化流体-页岩相互作用,但到目前为止,许多研究仅是描述性的,很少关注定量表征流体-页岩相互作用和因此,从地球化学的角度来看,是表面力。在这项研究中,我们进行了地球化学建模以通过已发表的工作解释自发吸收实验的结果。我们在存在0.1-20 wt%NaCl的情况下计算了有机物,石英和方解石的表面电势。此外,考虑到离子交换和矿物质溶解,我们使用PHREEQC预测了局部pH。我们还计算了恒定充气条件下的分离压力。结果表明,低盐度会在原位pH值下将有机物和无机矿物质的表面电势强烈降低。分离压力等温线表明,无论盐度如何,空气-有机物和空气-方解石系统均给出正的分离压力,这意味着水湿系统。此外,低盐度使分离压力对有机物更有利,表明具有润湿性改变过程。然而,方解石表面解体压力的变化随盐度的变化可忽略不计。我们的结果证实,毛细作用力至少部分有助于吸水,有机物的存在可能会由于润湿性改变而进一步促进吸水。这部分解释了为什么低盐度会在富含有机物的储层中引起页岩膨胀和微裂缝的产生。

著录项

  • 来源
    《Energy & fuels》 |2019年第9期|8250-8258|共9页
  • 作者单位

    Curtin Univ Western Australia Sch Mines Minerals Energy & Che Discipline Petr Engn 26 Dick Perry Ave Kensington WA 6151 Australia;

    China Univ Petr State Key Lab Petr Resources & Prospecting Beijing 102249 Peoples R China;

    Natl Univ Singapore Dept Civil & Environm Engn Singapore 117576 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号