首页> 外文期刊>Energy Exploration & Exploitation >How Many Monte Carlo Simulations Does One Need to do? Ⅱ. Lognormal, Binomial, Cauchy, and Exponential Distributions
【24h】

How Many Monte Carlo Simulations Does One Need to do? Ⅱ. Lognormal, Binomial, Cauchy, and Exponential Distributions

机译:一个人需要做多少次蒙特卡洛模拟? Ⅱ。对数正态,二项式,柯西和指数分布

获取原文
获取原文并翻译 | 示例
           

摘要

This article derives an estimation procedure to evaluate how many Monte Carlo realisations need to be done in order to achieve prescribed accuracies in the estimated mean value and also in the cumulative probabilities of achieving values greater than, or less than, a particular value as the chosen particular value is allowed to vary. In addition, by inverting the argument and asking what the accuracies are that result for a prescribed number of Monte Carlo realisations, one can assess the computer time that would be involved should one choose to carry out the Monte Carlo realisations. The arguments and numerical illustrations are carried though in detail for the four distributions of lognormal, binomial, Cauchy, and exponential. The procedure is valid for any choice of distribution function. The general method given in Lerche and Mudford (2005) is not merely a coincidence owing to the nature of the Gaussian distribution but is of universal validity. This article provides (in the Appendices) the general procedure for obtaining equivalent results for any distribution and shows quantitatively how the procedure operates for the four specific distributions. The methodology is therefore available for any choice of probability distribution function. Some distributions have more than two parameters that are needed to define precisely the distribution. Estimates of mean value and standard error around the mean only allow determination of two parameters for each distribution. Thus any distribution with more than two parameters has degrees of freedom that either have to be constrained from other information or that are unknown and so can be freely specified. That fluidity in such distributions allows a similar fluidity in the estimates of the number of Monte Carlo realisations needed to achieve prescribed accuracies as well as providing fluidity in the estimates of achievable accuracy for a prescribed number of Monte Carlo realisations. Without some way to control the free parameters in such distributions one will, presumably, always have such dynamic uncertainties. Even when the free parameters are known precisely, there is still considerable uncertainty in determining the number of Monte Carlo realisations needed to achieve prescribed accuracies, and in the accuracies achievable with a prescribed number of Monte Carol realisations because of the different functional forms of probability distribution that can be invoked from which one chooses the Monte Carlo realisations. Without knowledge of the underlying distribution functions that are appropriate to use for a given problem, presumably the choices one makes for numerical implementation of the basic logic procedure will bias the estimates of achievable accuracy and estimated number of Monte Carlo realisations one should undertake. The cautionary note, which is the main point of this article, and which is exhibited sharply with numerical illustrations, is that one must clearly specify precisely what distributions one is using and precisely what free parameter values one has chosen (and why the choices were made) in assessing the accuracy achievable and the number of Monte Carlo realisations needed with such choices. Without such available information it is not a very useful exercise to undertake Monte Carlo realisations because other investigations, using other distributions and with other values of available free parameters, will arrive at very different conclusions.
机译:本文推导了一种估计程序,以评估需要多少次蒙特卡洛实现才能实现估计平均值以及达到大于或小于所选特定值的累积概率的规定精度。特定值允许变化。另外,通过反转论点并询问对于规定数量的蒙特卡洛实现的结果的准确性,人们可以评估如果选择执行蒙特卡洛实现将涉及的计算机时间。虽然详细列出了对数正态,二项式,柯西和指数的四种分布的论点和数值插图。该过程对分配函数的任何选择均有效。 Lerche和Mudford(2005)中给出的一般方法不仅由于高斯分布的性质而具有巧合性,而且具有普遍有效性。本文(在附录中)提供了获取任何分布的等效结果的一般过程,并定量显示了该过程如何针对四种特定分布进行操作。因此,该方法可用于任何概率分布函数选择。有些分布具有两个以上的参数才能精确定义分布。平均值和围绕平均值的标准误的估计仅允许确定每个分布的两个参数。因此,具有两个以上参数的任何分布都具有自由度,这些自由度要么必须受其他信息约束,要么是未知的,因此可以自由指定。在这种分布中的流动性允许在实现规定的精度所需的蒙特卡洛实现的数量的估计中具有类似的流动性,并且在规定数量的蒙特卡洛实现的可实现的精度的估计中提供了流动性。如果没有某种方法来控制这种分布中的自由参数,人们将总是具有这样的动态不确定性。即使精确地确定了自由参数,在确定实现规定精度所需的蒙特卡洛实现的数量以及由于概率分布的不同功能形式而在规定数量的蒙特卡罗实现中可达到的精度方面仍然存在相当大的不确定性可以从中选择蒙特卡洛实现的方法调用。如果不了解适合用于给定问题的基础分布函数,则大概是人们对基本逻辑过程的数字实现所做的选择将使可实现的精度估计和应该进行的蒙特卡洛实现的估计数量产生偏差。警告性注释是本文的重点,并通过数字插图清晰地显示了该警告性注释,该注释是必须明确指定使用的分布以及选择的自由参数值(以及为什么要进行选择) ),以评估可达到的精度以及此类选择所需的蒙特卡洛实现的数量。没有这些可用信息,进行蒙特卡洛实现不是一个非常有用的练习,因为使用其他分布以及具有可用自由参数的其他值的其他研究将得出截然不同的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号