...
首页> 外文期刊>Energy & environmental science >Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition
【24h】

Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition

机译:理解纳米流体反向电渗析系统:电荷选择性和离子组成非常匹配

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The widespread use of tiny electrical devices, from microelectromechanical systems (MEMS) to portable personal electronics, provides a new challenge in the miniaturization and integration of power supply systems. Towards this goal, we have recently demonstrated a bio-inspired nanofluidic energy harvesting system that converts salinity gradient energy from the ambient environment into sustainable electricity with single ion-selective nanopores (Adv. Fund. Mater. 2010, 20, 1339). The nanofluidic reverse electrodialysis system (NREDS) significantly improves the performance of conventional membrane-based reverse electrodialysis systems due to a higher ionic flux and a lower fluidic resistance. However, the fundamental working mechanism of the NREDS has been largely unexplored in the literature. In this work we have systematically investigated the performance of the NREDS in relation to the electrolyte type and the charge selectivity of the nanofluidic channel using both experimental and theoretical approaches. Experimental results show that the short-circuit current, the open-circuit voltage, and the resulting electric power of the NREDS are very sensitive to the ionic composition of the electrolyte solution. Through an in-depth theoretical analysis, two dominant factors that govern the charge separation and ion selectivity of the nanochannels were identified. The results prove that, with well-matched electrolyte types and nanopore charge selectivity, the harvested electric power and energy conversion efficiency can be improved by nearly two orders of magnitude.
机译:从微机电系统(MEMS)到便携式个人电子产品,微型电气设备的广泛使用为电源系统的小型化和集成提出了新的挑战。为了实现这一目标,我们最近展示了一种受生物启发的纳米流体能量收集系统,该系统可通过单个离子选择性纳米孔将周围环境的盐度梯度能量转换为可持续的电力(Adv。Fund。Mater。2010,20,1339)。由于较高的离子通量和较低的流体阻力,纳米流体反向电渗析系统(NREDS)显着改善了传统的基于膜的反向电渗析系统的性能。但是,NREDS的基本工作机制在文献中尚未得到充分探讨。在这项工作中,我们使用实验和理论方法系统地研究了NREDS的性能与电解质类型和纳米流体通道的电荷选择性之间的关系。实验结果表明,NREDS的短路电流,开路电压和产生的电功率对电解质溶液的离子组成非常敏感。通过深入的理论分析,确定了控制电荷分离和纳米通道离子选择性的两个主要因素。结果证明,在具有良好匹配的电解质类型和纳米孔电荷选择性的情况下,所收获的电功率和能量转换效率可以提高近两个数量级。

著录项

  • 来源
    《Energy & environmental science》 |2011年第6期|p.2259-2266|共8页
  • 作者单位

    tate Key Laboratory of Nuclear Physics and Technology, and Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R.China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China;

    tate Key Laboratory of Nuclear Physics and Technology, and Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R.China;

    tate Key Laboratory of Nuclear Physics and Technology, and Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R.China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China;

    tate Key Laboratory of Nuclear Physics and Technology, and Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R.China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China,School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, P. R. China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号