...
首页> 外文期刊>Energy & environmental science >Stabilizing inorganic photoelectrodes for efficient solar-to-chemical energy conversion
【24h】

Stabilizing inorganic photoelectrodes for efficient solar-to-chemical energy conversion

机译:稳定无机光电极,实现高效的太阳能转化为化学能

获取原文
获取原文并翻译 | 示例

摘要

An efficient, inexpensive and stable photosynthetic material system that absorbs sunlight and uses the absorbed energy to electrochemically produce chemical and fuel products including hydrogen requires photoelectrode assemblies that are stable in electrolytes. Here we report a photoelectrochemical/ photosynthetic cell based on inorganic semiconductor photoelectrodes that shows the long-term operational stability necessary for the production of solar fuels and chemicals. The cell's stability is achieved by forming an active device using an inexpensive spin casted (20 nm) transparent conducting polymer coating (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)). PEDOT:PSS protects the photoelectrodes from photoelectrochemical corrosion and functionally serve as either a Schottky contact or as an efficient hole transport layer depending upon the choice and design of the underlying semiconductor heterostructure. Coated semiconductors were assessed both as photoelectrochemical and as freestanding, "autonomous" photosynthetic units and found to be stable for over 12 hours (for wired configuration) in corrosive electrolytes. The solar-to-chemical conversion efficiencies match or exceed devices with more expensive metal-based coatings. Furthermore, the PEDOT:PSS was found to have high electrocatalytic activity, thus no additional electrocatalyst was required. The results suggest a pathway to large scale, inexpensive, hybrid organic-inorganic solar-to-chemical energy conversion systems.
机译:吸收日光并利用吸收的能量以电化学方式生产包括氢在内的化学和燃料产品的高效,廉价且稳定的光合材料系统需要在电解质中稳定的光电极组件。在这里,我们报告了一种基于无机半导体光电极的光电化学/光合作用电池,该电池显示了生产太阳能燃料和化学品所必需的长期运行稳定性。通过使用廉价的旋铸(20 nm)透明导电聚合物涂层(聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS))形成有源器件,可以实现电池的稳定性。 PEDOT:PSS保护光电极免受光电化学腐蚀,并根据基础半导体异质结构的选择和设计在功能上充当肖特基接触或有效的空穴传输层。镀膜半导体被评估为光电化学和独立的“自主”光合作用单元,并在腐蚀性电解质中稳定超过12小时(对于有线配置)。太阳到化学的转换效率与具有更昂贵的金属基涂层的设备相匹配或超过。此外,发现PEDOT:PSS具有高的电催化活性,因此不需要额外的电催化剂。结果表明了通往大规模,廉价,混合的有机-无机太阳能-化学能转换系统的途径。

著录项

  • 来源
    《Energy & environmental science 》 |2013年第5期| 1633-1639| 共7页
  • 作者单位

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA;

    Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA;

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;

    Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA;

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号