首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production
【2h】

Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production

机译:用光谱法阐明了用于太阳能生产的无机-生物杂化生物中的能量转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rise of inorganic–biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic–abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica–cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica. Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700–1,900-cm−1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic–abiotic hybrid systems.
机译:用于太阳能生产的无机生物杂化生物的兴起刺激了对生物-非生物界面动力学的机械研究,以推动下一代系统的发展。该模型系统Moorella thermoacetica-CdS(CdS)将无机半导体纳米粒子光收集器与产乙酸细菌结合使用,以高效地将CO2光合作用还原为乙酸。在这项工作中,我们报告了对这种独特的电营养行为的见解,并提出了从CdS到热乙酸支原体的电荷转移机制。瞬态吸收(TA)光谱显示光激发电子转移速率随氢化酶(H2ase)酶活性的增加而增加。在与TA光谱相同的时间尺度上,时间分辨红外(TRIR)光谱显示了1,700–1,900-cm -1 光谱区域中的光谱变化。当在光合作用的最初24小时内取平均值时,该系统用于光合乙酸生成的量子效率也随着H2ase活性的增加和较短的载体寿命而增加。但是,在光合作用的最初3小时内,速率遵循相反的趋势:H2ase活性最低的细菌以最快的速度光合作用乙酸。这些结果表明了两种途径的机制:高量子效率的H2ase电荷转移途径产生了H2作为长时间(24 h)占主导地位的分子中间体,以及直接的能量转换酶途径负责产生乙酸。短时标(3小时)。这项工作代表了一个有前途的平台,可以利用传统的光谱学方法从更复杂的非生物-非生物混合系统中提取见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号