首页> 外文期刊>Energy & environmental science >Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration
【24h】

Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration

机译:通过全参数优化和最小化能量损耗的集成,实现碲化铋/方钴矿分段模块的热电转换效率为12%

获取原文
获取原文并翻译 | 示例
           

摘要

In recent decades, by continuously enhancing the figure of merit ZT of various thermoelectric (TE) materials, solid state TE technology has matured and is on the verge of making an impact in real industrial settings as a promising approach to harvest waste industrial heat and convert it to useful electricity. Nevertheless, actual TE module development has remained stagnant with rather poor efficiencies. This has raised an urgent need to design rational module structures that rely on complex parameter optimization and utilization of efficient integration technologies that minimize energy losses during bonding of various interfaces. Here, we demonstrate a three-dimensional numerical analysis model of a segmented TE power-generating device, which takes into account the temperaturedependent materials' properties and various parasitic losses. The model generates an optimized design with predictive performance to realize maximum conversion efficiency. Combined with the developed bonding schemes and assembly techniques, the segmented modules consisting of Bi2Te3-based alloys and CoSb3-based filled skutterudites were successfully fabricated with a record-high efficiency of up to 12% when operating under a temperature difference of 541 degrees C. The rational structure design based on the numerical analysis model and the extremely low thermal and electrical losses enable the heat-toelectricity conversion efficiency to reach up to 96.9% of the theoretical efficiency based on the TE materials themselves. These findings highlight the importance of the optimization strategy for TE power generation devices based on the TE materials' intrinsic properties and demonstrate that realistic high temperature TE modules with predictive high efficiency and high power density can be fabricated, which provides a useful guide to achieve a high conversion efficiency in large-scale TE applications.
机译:近几十年来,通过不断提高各种热电(TE)材料的ZT品质因数,固态TE技术已经成熟并即将在实际工业环境中产生影响,这是一种有希望的方法来收集工业废热并进行转化。变成有用的电。然而,实际的TE模块开发仍然停滞不前,效率很低。这就迫切需要设计合理的模块结构,该结构依赖于复杂的参数优化和有效集成技术的利用,以最大程度地减少各种接口绑定期间的能量损耗。在这里,我们演示了分段式TE发电装置的三维数值分析模型,该模型考虑了温度相关材料的特性和各种寄生损耗。该模型生成具有预测性能的优化设计,以实现最大的转换效率。结合已开发的键合方案和组装技术,成功地制造了由Bi2Te3基合金和CoSb3基填充方钴矿组成的分段模块,当在541℃的温度差下运行时,效率最高可达到12%。基于数值分析模型的合理结构设计以及极低的热损失和电损失使热电转换效率达到基于TE材料本身的理论效率的96.9%。这些发现凸显了基于TE材料固有特性的TE发电设备优化策略的重要性,并证明了可以制造出具有预测性的高效率和高功率密度的现实高温TE模块,这为实现节能目标提供了有用的指导。大型TE应用中的高转换效率。

著录项

  • 来源
    《Energy & environmental science》 |2017年第4期|956-963|共8页
  • 作者单位

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China|Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China;

    Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA;

    Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China|Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号