首页> 外文期刊>Energy Conversion & Management >Modeling and control of MEMS with high speed synchronous micromotors and controllers/drivers-on-VLSI-chip ICs
【24h】

Modeling and control of MEMS with high speed synchronous micromotors and controllers/drivers-on-VLSI-chip ICs

机译:带有高速同步微电机和VLSI芯片上的控制器/驱动器的MEMS建模与控制

获取原文
获取原文并翻译 | 示例
           

摘要

This articles addresses and solves the modeling, analysis and control problems for microelectrome-chanical systems (MEMS) that integrate high speed permanent magnet synchronous micromotors (motion microdevices) and controllers/drivers-on-VLSI-chip ICs. High performance micromotors (2, 4 and 6 mm diameter) with and without Hall effect microsensors are fabricated using high aspect ratio and surface micromachining techniques, while the ICs are made using biCMOS technology. In addition to fabrication, a wide spectrum of fundamental problems in MEMS synthesis, modeling, analysis and control are solved. The MEMS synthesis is performed using basic principles with the ultimate goal to guarantee operation-ability, functionality, compatibility, integrity, controllability and synergy. Synchronous micromotors are designed by applying the MEMS Synthesis and Classification Solver. Signal processing, filtering, computing, interfacing and amplification are performed by the controllers/drivers-on-VLSI-chip ICs that control the micromotors by properly applying the phase voltages to the micromotor windings. Analysis, control and optimization are based on mathematical models. Mathematical modeling is done by applying basic principles and the fundamental laws of electromechanics. The derived lumped parameter mathematical model, which is given in the form of nonlinear differential equations, allows one to perform the data intensive analysis, heterogeneous simulations with outcome prediction and controller design. Based on micromotor electromagnetics-electromechanics and microelectronics capabilities, we derive control algorithms. An innovative synthesis procedure is reported to design soft switching continuous controllers with nonlinear switching surfaces. These control laws, which ensure robust tracking and disturbance rejection, are implemented. The algorithms designed are different from the existing variable structure control laws. Compared with hard switching discontinuous controllers, the advantages of the soft switching sliding mode control paradigm are that the singularity and sensitivity problems are avoided, robustness and stability are improved, chattering (high frequency switching) is eliminated, etc. These features expand the MEMS operating envelopes. enhance robustness and controllability.ad well as improve efficiency and reliability. Experimental verification to assess the fundamental results is performed. Integrated MEMS and their analyze applicability and effectiveness of soft switching algorithms for micromotors controlled by ICs, etc.
机译:本文解决并解决了微机电系统(MEMS)的建模,分析和控制问题,该系统集成了高速永磁同步微电机(运动微器件)和VLSI芯片上的控制器/驱动器。带有和不带有霍尔效应微传感器的高性能微电机(直径分别为2、4和6 mm)是使用高纵横比和表面微加工技术制造的,而IC是使用biCMOS技术制造的。除制造外,还解决了MEMS合成,建模,分析和控制中的许多基本问题。 MEMS综合使用基本原理执行,其最终目标是确保可操作性,功能性,兼容性,完整性,可控制性和协同作用。同步微电机是通过应用MEMS综合和分类求解器来设计的。信号处理,滤波,计算,接口连接和放大由VLSI芯片上的控制器/驱动器IC执行,该IC通过将相电压适当地施加到微电机绕组来控制微电机。分析,控制和优化基于数学模型。通过应用机电的基本原理和基本定律来完成数学建模。导出的集总参数数学模型以非线性微分方程的形式给出,允许人们执行数据密集型分析,具有结果预测的异构仿真和控制器设计。基于微电机电磁学,机电学和微电子学的能力,我们推导了控制算法。据报道,有一种创新的合成程序可以设计具有非线性开关表面的软开关连续控制器。实施了这些确保稳定跟踪和抑制干扰的控制律。设计的算法与现有的可变结构控制定律不同。与硬开关不连续控制器相比,软开关滑模控制范例的优势在于避免了奇异性和灵敏度问题,提高了鲁棒性和稳定性,消除了颤动(高频开关)等。这些特性扩展了MEMS的工作范围信封。增强鲁棒性和可控性,并提高效率和可靠性。进行实验验证以评估基本结果。集成MEMS及其对IC等控制的微电机的软开关算法的适用性和有效性进行分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号