首页> 外文期刊>Energy Conversion & Management >Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
【24h】

Probability density forecasting of wind power using quantile regression neural network and kernel density estimation

机译:基于分位数回归神经网络和核密度估计的风电概率密度预测

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to the increasingly serious social energy crisis nowadays, wind power and other renewable energy are paid more attention. However, penetration of wind power prominently enhances the degree of complexity and difficulty in planning and dispatching of electric power systems. High-precision and more-information short term wind power forecasting (STWPF) results can effectively alleviate the uncertainly of wind power and balance the electrical power. Kernel function and bandwidth selection method have significant impact on the results of STWPF. A hybrid wind power probability density prediction method based on quantile regression neural network and Epanechnikov kernel function using Unbiased cross-validation (QRNNE-UCV) is presented. The wind power predicting results at different conditional quantiles are used as the input of kernel density estimation (KDE), which is capable of estimating the comprehensive wind power probability density forecasting information at any time in the future. In order to evaluate the wind power prediction results, the paper constructs two evaluation criteria, including evaluation metrics of point prediction results and evaluation metrics of prediction interval (PI). As a point prediction result, the probability mean is first constructed in the paper. Two real datasets of wind power from Ontario, Canada, are used to verify the QRNNE-UCV method. Moreover, by comparing with the probability density results at various confidence levels, the influence of confidence level on STWPF is investigated in this article. Experiment results show that the QRNNE-UCV method can construct more accurate PI and probability density curves, and the calculated probability mean is superior to the other point predictions. Meanwhile, the quality of PICP and PINAW improves with the increase of confidence level. The above prediction results have the ability to validly quantify the indeterminacy of wind power generation in contrast to existing support vector quantile regression (SVQR) and quantile regression neural network and triangle kernel function (QRNNT) probability density forecasting methods.
机译:由于当今日益严重的社会能源危机,风能和其他可再生能源受到更多关注。然而,风力的渗透显着提高了电力系统的规划和调度的复杂度和难度。高精度,更多信息的短期风电预测(STWPF)结果可有效缓解风电的不确定性并平衡电力。内核功能和带宽选择方法对STWPF的结果有重大影响。提出了基于分位数回归神经网络和Epanechnikov核函数的无偏交叉验证(QRNNE-UCV)混合风力发电概率密度预测方法。将不同条件分位数的风电功率预测结果用作核密度估计(KDE)的输入,它可以在将来的任何时间估计综合的风电功率密度预测信息。为了评估风能预测结果,本文构建了两个评估标准,分别是点预测结果的评估指标和预测区间的评估指标。作为点预测结果,首先构建概率均值。来自加拿大安大略省的两个真实的风力发电数据集用于验证QRNNE-UCV方法。此外,通过与各种置信度下的概率密度结果进行比较,研究了置信度对STWPF的影响。实验结果表明,QRNNE-UCV方法可以构建更精确的PI和概率密度曲线,并且所计算的概率均值优于其他点的预测。同时,随着置信度的提高,PICP和PINAW的质量也随之提高。与现有的支持向量分位数回归(SVQR)和分位数回归神经网络和三角核函数(QRNNT)概率密度预测方法相比,上述预测结果具有有效量化风力发电不确定性的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号