首页> 外文期刊>Energy Conversion & Management >Performance and parameter sensitivity comparison of CSP power cycles under wide solar energy temperature ranges and multiple working conditions
【24h】

Performance and parameter sensitivity comparison of CSP power cycles under wide solar energy temperature ranges and multiple working conditions

机译:宽太阳能温度范围下CSP电源周期的性能和参数灵敏度比较及多个工作条件

获取原文
获取原文并翻译 | 示例
           

摘要

Concentrated solar power (CSP) is an important way for solar energy utilization, and the efficient solar energy utilization is closely related to a reasonable power cycle. The comparative analysis of the steam Rankine cycle, supercritical CO2 (s-CO2) Brayton cycle and air Brayton cycle is always with a particular heat source, working parameter and working condition. However, the solar energy for CSP has a wide temperature range from 250 to 1000 degrees C and the energy conversion potential of the cycles varies obviously under different heat source temperatures. The maximum pressure of the working condition restricts the cycle energy conversion potential especially for s-CO2 Brayton cycle. The isentropic efficiency settings severely influence on the cycle comparison results. Therefore, in this work, the energy conversion mechanism and potential of the three types of cycles under a wide solar energy temperature ranges are revealed by optimized with multi-operating conditions. The sensitivity of each cycle to the high working pressure and irreversible processes are analyzed. Results show that, achieving the highest efficiency eta(max) often means an extremely high working pressure. However, the lowest P-tur_in to keep relatively high efficiency (higher than 'eta(max)-1%') can be much lower than that of the maximum efficiency. S-CO2 Brayton cycle has the absolutely highest cycle thermal efficiency when the turbine inlet temperature is higher than 500 degrees C and the least sensitive to the turbine isentropic efficiency. However, s-CO2 Brayton cycle is the most dependent on high turbine inlet pressure and the energy conversion potential of s-CO2 Brayton cycle is severely undervalued if the working pressure is restricted to 20 MPa or 30 MPa. The air Brayton cycle efficiency keeps around 6% lower than the s-CO2 Brayton cycle at the same turbine inlet temperature and exceed the steam Rankine cycle when the turbine inlet temperature is higher than 750 degrees C. The air Brayton cycle has the least dependence on high working pressure, however, it is most affected by the non-ideality of expansion and compression processes.
机译:集中的太阳能(CSP)是太阳能利用的重要途径,高效的太阳能利用率与合理的功率循环密切相关。蒸汽朗肯循环,超临界CO2(S-CO2)布雷顿循环和空气布雷顿循环的比较分析总是具有特定的热源,工作参数和工作状态。然而,CSP的太阳能具有宽的温度范围从250到1000摄氏度,并且在不同的热源温度下循环的能量转换电位变化。工作条件的最大压力限制了循环能量转换电位,特别是对于S-CO2 Brayton循环。常规效率设置严重影响循环比较结果。因此,在这项工作中,通过用多操作条件优化,揭示了在宽太阳能温度范围内的三种类型循环的能量转换机制和电位。分析了每个循环到高工作压力和不可逆过程的敏感性。结果表明,实现最高效率的ETA(MAX)通常意味着极高的工作压力。然而,最低的p-tur_in以保持相对高的效率(高于'ETA(MAX)-1%')可以远低于最大效率的效率。当涡轮机入口温度高于500℃时,S-CO2 Brayton循环具有绝对最高的循环热效率,并且对涡轮机等熵效率最低。然而,S-CO2 Brayton循环最依赖于高涡轮机入口压力,如果工作压力限制为20MPa或30MPa,则S-CO2 Brayton循环的能量转换电位受到严重低估。空气Brayton循环效率比同一涡轮机入口温度的S-CO2布雷顿循环低约6%,并且当涡轮机入口温度高于750℃时,超过蒸汽兰峰循环。空气布雷顿循环的空气依赖性最少然而,高工作压力,受扩张和压缩过程的非理想性的影响最大。

著录项

  • 来源
    《Energy Conversion & Management》 |2020年第8期|112996.1-112996.14|共14页
  • 作者单位

    Beijing Univ Civil Engn & Architecture Sch Environm & Energy Engn Beijing 100044 Peoples R China|Beijing Univ Civil Engn & Architecture Beijing Engn Res Ctr Sustainable Energy & Bldg Beijing 100044 Peoples R China;

    Beijing Univ Civil Engn & Architecture Sch Environm & Energy Engn Beijing 100044 Peoples R China;

    Chinese Acad Sci Tech Inst Phys & Chem Key Lab Cryogen Beijing 100190 Peoples R China;

    Tsinghua Univ Key Lab Thermal Sci & Power Engn Minist Educ Beijing 100084 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Air Brayton cycle; Supercritical CO2 Brayton cycle; Steam Rankine cycle; Conversion potential; Concentrated solar power;

    机译:空气布雷顿循环;超临界CO2 BRAYTON循环;蒸汽朗肯循环;转换潜力;集中的太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号