...
首页> 外文期刊>ELECTROPHORESIS >Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems
【24h】

Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems

机译:使用环氧包埋电极将电化学检测与基于微芯片的分析系统集成在一起

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various sizes and compositions is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against poly(dimethylsiloxane) (PDMS)-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode is used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing compositions enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 μm in diameter and 27 μm in height) that can be integrated within a fluidic network. As compared with the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/μM for the pillar versus 4.2 pA/μM for the flat electrode) and limit of detection (20 nM for the pillar versus 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface is generated as desired.
机译:描述了一种制造用于微芯片装置的电极的新方法,该方法涉及使用特氟龙模具和可商购的环氧树脂来嵌入各种尺寸和组成的电极。可以对所得的环氧基材进行抛光以生成新的电极,并密封在基于聚二甲基硅氧烷(PDMS)的流体结构上。基于微芯片的流动注射分析用于表征环氧埋藏电极。结果表明,金电极可与液态汞混合,所得的汞/金电极可用于选择性检测裂解红细胞中的谷胱甘肽。封装多种成分不同的电极材料的能力使微芯片电泳与电化学检测相结合。最后,这种方法的独特之处在于电极连接是从环氧树脂基体的底部进行的。这样就可以创建三维金柱电极(直径65μm,高27μm),这些电极可以集成在流体网络中。与使用类似直径的扁平电极相比,使用柱状电极可以提高灵敏度(柱状电极的灵敏度为72.1 pA /μM,而平板电极为4.2 pA /μM)和检测极限(柱子为20 nM,而扁平电极为600 nM,儿茶酚为测试分析物。这些埋入环氧树脂的电极有望产生廉价的微流体装置,该装置可用于电化学检测生物学上重要的分析物,其中可以对电极进行抛光并根据需要生成新的电极表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号