首页> 外文期刊>IEEE Transactions on Electron Devices >Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature
【24h】

Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature

机译:在液氮温度下双极晶体管高性能工作的基本外形设计

获取原文
获取原文并翻译 | 示例
           

摘要

Measurements of thin epitaxial-base polysilicon-emitter n-p-n transistors with increasing base doping show the effects of bandgap narrowing, mobility changes, and carrier freezeout. At room temperature the collector current at low injection is proportional to the integrated base charge, independent of the impurity distribution. At temperatures below 150 K, however, minority injection is dominated by the peak base doping because of the greater effectiveness of bandgap narrowing. When the peak doping in the base approaches 10/sup 19/ cm/sup -3/, the bandgap difference between emitter and base is sufficiently small that the current gain no longer monotonically decreases with lower temperature but instead shows a maximum as low as 180 K. The device design window appears limited at the low-current end by increased base-emitter leakage due to tunneling and by resistance control at the high-current end. Using the measured DC characteristics, circuit delay calculations are made to estimate the performance of an emitter-coupled logic ring oscillator at room and liquid-nitrogen temperatures. It is shown that if the base doping can be raised to 10/sup 19/ cm/sup -3/ while keeping the base thickness constant, the minimum delay at liquid-nitrogen temperature can approach the delay of optimized devices at room temperature.
机译:随着基极掺杂的增加,对薄型外延基极多晶硅发射极n-p-n晶体管的测量显示出带隙变窄,迁移率变化和载流子冻结的影响。在室温下,低注入时的集电极电流与积分的基础电荷成比例,与杂质分布无关。然而,在低于150 K的温度下,由于带隙变窄的有效性更高,少数注入受峰基掺杂的支配。当基极中的峰值掺杂接近10 / sup 19 / cm / sup -3 /时,发射极和基极之间的带隙差足够小,使得电流增益不再随温度的降低而单调降低,而是显示出最大值低至180 K.由于隧道效应引起的基极-发射极泄漏增加以及大电流端的电阻控制,在低电流端器件设计窗口似乎受到限制。利用测得的直流特性,进行电路延迟计算,以估算室温和液氮温度下发射极耦合逻辑环形振荡器的性能。结果表明,如果在保持基底厚度不变的情况下将基底掺杂提高到10 / sup 19 / cm / sup -3 /,则液氮温度下的最小延迟可以接近优化器件在室温下的延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号