首页> 外文期刊>IEEE Transactions on Electron Devices >Double-Epilayer Structure for Low Drain Voltage Rating n-Channel Power Trench MOSFET Devices
【24h】

Double-Epilayer Structure for Low Drain Voltage Rating n-Channel Power Trench MOSFET Devices

机译:低漏极耐压n沟道功率沟道MOSFET器件的双外延结构

获取原文
获取原文并翻译 | 示例
           

摘要

Double-epilayer structures were studied for n-channel low-voltage power trench MOSFET devices with drain-to-source voltage $(V_{rm ds})$ of 20 V, and various device performance improvements have been observed. The threshold voltage variation $(sigma_{V_{rm th}})$ can be reduced by increasing the intrinsic epilayer thickness. A 9% effective electron mobility $mu_{n}$ improvement has been observed and is attributed to the reduced background phosphorus scattering. A $Q_{rm gd}$ of 3.1 nC for double-epilayer structure is observed which is about 30% lower than the 4.5 nC for the single-epilayer structure. This improved $Q_{rm gd}$ is due to both an increasing depletion width at the bottom of the trench and the well junction moving toward the trench bottom for the double-epilayer structure. The dependence of $Q_{rm gd}$ on the double-epilayer structure (intrinsic epilayer thickness and the doped epilayer resistivity) is found following the power law $Q_{rm gd}propto aX^{ - b}$, where $a$ and $b$ are double-epilayer structure dependent. Compared to the single-epilayer structure, a double-epilayer structure can handle larger reverse current, suggesting a smaller basis resistance $(R_{{rm bb}^{prime}})$ for the double-epilayer structure. This improvement ranges from 7% to 24% depending on the die pitch. A 20% less temperature dependence of device on-resistance for the double-epilayer structure has also been observed. This enables a large forward curre-nt capability, although the mechanism is not well understood.
机译:研究了漏极-源极电压$(V_ {rm ds})$为20 V的n沟道低压功率沟槽MOSFET器件的双外延结构,并观察到各种器件性能的提高。可以通过增加本征外延层厚度来减小阈值电压变化$(sigma_ {V_ {rm th}})$。已经观察到有效电子迁移率改善了9%,这归因于减少了背景磷的散射。观察到双外延层结构的Qn {rm gd} $为3.1 nC,比单外延层结构的4.5 nC低约30%。这种改进的$ Q_ {rm gd} $是由于沟槽底部的耗尽宽度增加以及双结层结构的阱结向沟槽底部移动所致。根据幂定律$ Q_ {rm gd} propto aX ^ {-b} $,发现$ Q_ {rm gd} $对双外延层结构的依赖性(本征外延层厚度和掺杂的外延层电阻率),其中$ a $和$ b $是依赖双表层结构的。与单外延层结构相比,双外延层结构可以处理更大的反向电流,这表明双外延层结构的基极电阻$(R _ {{rm bb} ^ {prime}})$较小。根据芯片间距的不同,此改进范围为7%至24%。还已经观察到双表层结构的器件导通电阻的温度依赖性降低了20%。尽管该机制还不是很清楚,但可以实现大的前向校正能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号