首页> 外文期刊>Electron Devices, IEEE Transactions on >Design and Fabrication Approaches of 400–600 V 4H-SiC Lateral MOSFETs for Emerging Power ICs Application
【24h】

Design and Fabrication Approaches of 400–600 V 4H-SiC Lateral MOSFETs for Emerging Power ICs Application

机译:400-600 V 4H-SIC横向MOSFET的设计和制造方法,用于弹电功率ICS应用

获取原文
获取原文并翻译 | 示例
       

摘要

This article reports the demonstration and fabrication of 400–600 V, 4H-SiC lateral MOSFETs on 6-in, N+ substrates. The P-top was implanted on an $ext{N}oldsymbol -$ drift region to create a single reduced surface field (RESURF) structure to alleviate the electric field on the surface. The different layout methodologies (source-centered and drain-centered) for making lateral MOSFETs are discussed. The process and design split, such as rapid thermal anneal (RTA) temperatures (900 °C and 1000 °C), different channel designs [accumulation-mode (ACCU) and inversion-mode (INV)], and channel lengths were varied and experimentally analyzed to optimize the device performance. It was confirmed that channel components (channel design and channel length) and RTA temperature are the key ingredients to improve the forward characteristic of the lateral MOSFETs. With the gate to drain length ( ${L}_{ext {gd}}$ ) of ${5}~oldsymbol mu ext{m}$ , the breakdown voltage of 600 V was achieved with a voltage supporting capability of 120 $ext{V}oldsymbol / oldsymbol mu ext{m}$ . On the other hand, a lateral MOSFET with ${L}_{ext {gd}}$ of $2.5~oldsymbol mu ext{m}$ and with a further reduced channel length ( ${L}_{ext {ch}} oldsymbol {=} {0.3} ,,oldsymbol mu ext{m}$ ), a record specific ON-resistance of 7.7 $ext{m}oldsymbol Omega $ -cm2 and breakdown voltage of 450 V were achieved. Device design, layout, fabrication, and electrical characteristics of the 400–600 V, 4H-SiC lateral MOSFETs are discussed and reported.
机译:本文报告了6-IN,N +基材上的400-600 V,4H-SIC横向MOSFET的演示和制造。 p-top植入了一个<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {n} boldsymbol - $ 漂移区域以创建单个减小的表面字段(Resurf)结构,以缓解表面上的电场。讨论了用于制备横向MOSFET的不同布局方法(以源源性和漏极为中心)。该过程和设计分裂,如快速热退火(RTA)温度(900°C和1000°C),不同的通道设计[累积 - 模式(ACCU)和反转模式(INV)]和通道长度变化实验分析以优化设备性能。确认通道部件(通道设计和通道长度)和RTA温度是改善横向MOSFET的前向特性的关键成分。用大门排水长度(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {l} _ { text {gd}} $ ) 的<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {5}〜 boldsymbol mu text {m} $ ,通过120的电压支撑能力实现了600V的击穿电压<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {v} boldsymbol / boldsymbol mu text {m} $ 。另一方面,横向MOSFET<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {l} _ { text {gd}} $ 的<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ 2.5〜 boldsymbol mu text {m} $ 并且进一步降低通道长度(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {l} _ { text {ch}} boldsymbol {=} {0.3} ,, boldsymbol mu text {m} $ ),记录特定的电阻为7.7<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {m} boldsymbol oomga $ -厘米 2 达到450V的击穿电压。讨论和报道了400-600V,4H-SIC横向MOSFET的装置设计,布局,制造和电气特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号