...
首页> 外文期刊>Ecotoxicology and Environmental Safety >SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress
【24h】

SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress

机译:SA和AM共生调控盐胁迫下鹰嘴豆基因型的抗氧化防御机制和浅田途径

获取原文
获取原文并翻译 | 示例
           

摘要

Salt stress disturbs redox homeostasis by perturbing equilibrium between generation and removal of reactive oxygen species (ROS), which alters the normal metabolism of plants through membrane damage, lipid peroxidation and denaturation of proteins. Salicylic acid (SA) seed priming and arbuscular mycorrhizal (AM) fungi impart salt tolerance in legumes by maintaining redox balance. The present investigation focused on the relative and combined applications of SA and Rhizoglomus intraradices in scavenging ROS in Cicer arietinum L. (chickpea) genotypes (salt tolerant-PBG 5, relatively sensitive-BG 256) subjected to salt stress. Despite the enhanced antioxidant mechanisms under salt stress, ROS (superoxide, O-2 center dot- and hydrogen peroxide, H2O2) accumulation increased significantly and induced lipid peroxidation and lipoxygenase (LOX) activities, which disrupted membrane stability, more in BG 256 than PBG 5. Salt stress also caused redox imbalance by lowering ascorbate/ dehydroascorbate (ASA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG) ratios, indicating that redox-homeostasis was crucial for salt-tolerance. Exogenous SA was more promising in reducing ROS-generation and lipid-peroxidation, which provided higher membrane stability as compared to AM inoculation. Although, the enzymatic antioxidants were more active in SA treated plants, yet, AM inoculation outperformed in increasing reformative enzyme activities of Foyer-Halliwell-Asada cycle, which resulted in higher plant biomass in a genotype-dependent manner. SA increased AM root colonization and provided functional complementarity to R. intraradices and thereby strengthening antioxidant defense mechanisms through their cumulative contribution. The study suggested the use of +SA +AM as an eco-friendly tool in imparting salt tolerance in chickpea genotypes subjected to long-term salinity.
机译:盐胁迫通过扰动活性氧(ROS)的产生和去除之间的平衡来扰乱氧化还原稳态,后者通过膜破坏,脂质过氧化和蛋白质变性来改变植物的正常代谢。水杨酸(SA)引发剂和丛枝菌根(AM)真菌通过维持氧化还原平衡来赋予豆类耐盐性。本研究侧重于SA和根瘤菌根内辐射菌的相对和联合应用,以清除遭受盐分胁迫的西洋樱桃(鹰嘴豆)基因型(耐盐性PBG 5,相对敏感的BG 256)中的ROS。尽管在盐胁迫下增强了抗氧化机制,但ROS(超氧化物,O-2中心过氧化氢和过氧化氢,H2O2)积累明显增加,并诱导脂质过氧化和脂氧合酶(LOX)活性,这破坏了膜的稳定性,在BG 256中比在PBG中更多5.盐胁迫还通过降低抗坏血酸盐/脱氢抗坏血酸盐(ASA / DHA)和降低谷胱甘肽/氧化型谷胱甘肽(GSH / GSSG)比例而引起氧化还原失衡,表明氧化还原稳态对耐盐性至关重要。外源SA在减少ROS生成和脂质过氧化方面更具前景,与AM接种相比,它们提供了更高的膜稳定性。虽然,酶促抗氧化剂在SA处理过的植物中更具活性,但是AM接种在增加Foyer-Halliwell-Asada循环的重组酶活性方面表现出色,从而以基因型依赖的方式导致更高的植物生物量。 SA增加了AM根定植,并为R. intraradices提供了功能上的互补性,从而通过它们的累积作用增强了抗氧化防御机制。这项研究建议使用+ SA + AM作为一种生态友好的工具来赋予遭受长期盐度影响的鹰嘴豆基因型耐盐性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号